
ARP Request Support
Make it work the first time

Wed, May 21, 1997

When using Internet Protocols (IP), one must use the Address Resolution Protocol
(ARP) to obtain a network physical address given a target IP address. Replies from
ARP requests are cached in an ARP table so that ARP requests don't have to be
performed too often. After some time, an ARP table entry is normally flushed, so that
the next time it is necessary to send to that IP address, a new ARP request must be
used. Although an IP implementation may hold back datagrams to be sent to a target
IP address until it has obtained the hardware address, it is not required to do so. In
many implementations, when faced with sending a datagram to a target IP address
on the local network, the system sends an ARP request instead of the message, hoping
that a high level retry will subsequently find a physical network address in the cache
so that the datagram can be delivered. The IRM implementation of IP was designed to
work in just this way. This note describes a method of implementing support for
delaying a datagram until an ARP reply has been received so that ARP requests will
occur automatically as needed without omitting the first datagram.

IRM Networking Background
IRM network support has had a long history. Network software organization in

the preceding VME local station implementation even preceded IP support. It is
designed around the communication of messages, as distinct from frames or
datagrams. In both Classic and Acnet protocols, multiple messages that target the
same node are concatenated into single frames or datagrams as can fit. (In some
cases, messages cannot be combined, say in the case that a message is really the
entire contents of a UDP datagram.) The concatenation of messages is handled by low
level network code that is invoked after a network queue, one per network, has been
loaded with pointers to network message blocks. Concatenation works with
consecutively queued messages that target the same node and, in the case of UDP,
the same node/port, or socket. Much of a front end's network communication consists
of replies to data requests. A linked list of all outstanding data requests is maintained
in an order such that multiple requests from the same node are grouped together.
This scheme increases the likelihood that reply messages to multiple data requests
from the same node that are due at the same time will be combined into a common
frame or datagram for delivery. Often a number of IRMs are logically connected
through a data server node, so that the chance of having multiple requests stemming
from a common node is even more likely. Concatenation, of course, improves the
efficiency of network utilization and is therefore deemed a "good thing."

The support for queuing all network messages is handled by a common routine called
OUTPQX. It has the job of placing the pointer to a network message block into an
OUTPQ ("output pointer queue") according to the target network. The target network
is determined by the destination node# word found in the message block. Ranges of
node#s target different networks, and OUTPQX knows all about these ranges. For

ARP Request Support p 2

Node# (hex) Network

000x–00Ex token ring via Acnet logical node table

00Fx multicast raw

01xx–03xx token ring raw

04xx token ring raw

05xx–07xx token ring raw or ethernet IP via DNS

08xx token ring raw via token ring/ethernet bridge 09xx–10xx

token ring IP or ethernet IP

09Fx multicast IP

7Axx arcnet raw

8xxx ethernet raw

6xxx token ring UDP socket

Exxx ethernet UDP socket

The range 05xx–07xx has a special significance. This range may imply use of token
ring or ethernet, and it may be raw or IP. Node#s in this range will be sent via IP if the
local node's global "broadcast" node# is in the range 09xx. (The "broadcast" node# is
usually a multicast node# this is used to target requests that must be fulfilled by
contributions from more than one other node, or to target Classic protocol device
name lookup requests.) To get the IP address, the IP Node Address Table IPNAT is
consulted that holds cached IP addresses that are derived from the local Domain
Name Server via the local application DNSQ. All current IRMs are configured with a
"broadcast" node of 09Fx. The choice of ethernet or token ring is made depending on
CPU board and whether IP is to be used. On an MVME162 board, ethernet is always
used for IP; ethernet is also used for non-IP (raw) when there is no token ring interface
present. In practice, IRMs use ethernet on IP. MVME133 board-based systems use
token ring, either IP or raw. Only a 162 board system can use both token ring and
ethernet, and it will always use ethernet for IP.

IP communications is based upon a socket, which specifies an IP address and a UDP

port#. (ICMP and IGMP effectively use a zero port#.) The low 12 bits of the socket
node# in the above table refer to an 8-bit index into the ARP table and a 4-bit port#
index. Each ARP table entry in active use has an associated port# block that can
contain up to 15 active port#s from that node. In this way, a single word used as a
target node# encodes a UDP socket. There are 254 ARP table entries available for
sockets in active use, each of which can deal with up to 15 active UDP port#s.

New scheme for handling ARP requests
The networking support in IRMs has always been "in a hurry." An IRM is a front

end that adheres to real-time performance. The notion of holding up network
communications with other nodes while awaiting an ARP reply is not consistent with

ARP Request Support p 3

realtime functionality. As a rule to be followed, it's "ok" to hold up messages that are
to be sent to a target node for which an ARP request must be sent, but it's not "ok" to
hold up messages to be sent to other nodes. The new scheme honors this rule.

New code was added to the OUTPQX routine to detect the case that an ARP request
will frustrate delivery of a message using IP, if the message were allowed to pass on to
the network software that builds frames. In such a case, an ARP request message is
broadcast to the network, a ptr to the message block is queued in a data structure
linked with the corresponding ARP table entry, and success is returned to the caller,
implying that the message block has been "queued to the network." When the ARP

reply is received, often within a few milliseconds, and the hardware address found
therein is deposited into the corresponding ARP table entry, all the queued message
block ptrs are passed through OUTPQX again, this time with assurance that they will
really be queued to the network. If no ARP reply is forthcoming, after a couple of
seconds, the message ptrs are passed through OUTPQX in such a way that they are
queued to the appropriate OUTPQ, but they are marked so that the lower level
network frame-building software will ignore them. As a result, they can still be
handled by the Queue Monitor task, which has the responsibility of freeing blocks
that are no longer needed following completion of transmission, or of marking them no
longer busy so they are available for subsequent retry use.

An ARP queue block that is allocated to house the queued message block ptrs is large
enough to hold 13 ptrs. If more are needed, another ARP queue block is allocated and
linked to the first, so that there is no real limit to the number of messages that can be
queued awaiting an ARP reply.

To implement this new ARP queue support, changes were made to OUTPQX as
described above, to the IPARP suite of routines that support access to the ARP table,
and to the SNAP Task, which handles ARP replies.

Classic Protocol
Message formats for the pedestrian

August 7, 1992

This note introduces the classic protocol message formats in use by the
local
control stations used at Fermilab in the D0 and Linac control systems. The
messages can be used on token ring with SAP=$18, or they can be used
from any
IP node targetting UDP port# 6800 (decimal) for requests. For more
extensive
details, consult other documents.

Robert Goodwin
goodwin@fnal.gov

There are only a few basic classic protocol message type numbers as
follows:

0. Data reply
1. (n.u.)
2. Data request
3. Data setting
4. Analog alarm
5. Digital alarm
6. Comment alarm

The following message formats are presented as arrays of 2-byte words
in which the big endian byte order is assumed (hi byte first).
Hex data is used when possible in the format pictures. The message type
number is found in the most significant 4 bits of the third word.

More than one message can be placed into a single UDP datagram.
The message size word in that case delineates each message.

The request message type is described before the reply.

Classic Protocol p 2
Message type 2. Data request

+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+--------+
| 2 s | list# | $20= non-server. $28= server. list# identifies request.
+--------+--------+
| period | #ltyp | period in 15Hz cycles (0=one-shot), #listypes.
+----+---+--------+
| il | #idents | ident length in bytes (4 bits), #idents (12 bits)
+----+---+--------+
| ltyp# | 0 0 | \
+--------+--------+ | repeat for #listypes
| #bytes req'd | |
+-----------------+ /
| ident node# | \
+-----------------+ | repeat for #idents
| ident index# | |
+-----------------+ /

The example shown is for the case of one listype, one ident, ident length=4.
There are about 80 listypes defined. The meaning is roughly the kind of
data
that is desired. It implies a certain ident type and therefore ident length.
Simple examples of listypes are:

 listype# kind of data requested ident type
 -------- -

0 analog channel reading channel#
1 analog channel setting channel#
2 analog channel nominal value channel#
3 analog channel tolerance value channel#
4 analog channel alarm flags, count channel#

20 memory data by bytes address
21 digital bit I/O bit#
25 digital byte I/O byte#
29 memory data by words address
40 analog reading in engineering units channel#
41 analog setting in engineering units channel#

The meaning of the request is that listype data is requested for all listypes
using all idents given. For each listype and #bytes, generate response data
for each ident. The ident array is processed in sequence for each listype.
Thus a request is in general a matrix request. Therefore requests cannot
be combined if one needs separate arrays of idents for each listype. In that
case, more than one request should be made, each using a diffrent list#.
If one wants 1 Hz readings and settings for channels 101,102,108 in node

Classic Protocol p 3
then the request would be as follows:

001E size=30
0576 dest node
2033 non-server request using list#=$33
0F02 1 Hz, 2 listypes
4003 4-byte idents, 3 idents
0000 reading
0002 2 bytes
0100 setting
0002 2 bytes
0576 target node/chan list
0101
0576
0102
0576
0108

In this non-server case, the dest node of the request message must match
the
target node# in each ident. In the server case, the request will be sent (as
a
non-server message) by the dest node to the target node, or in the case of
more than one node in the list of idents that is not the same as the dest
node, to a group (multicast) destination address to reach all local stations.
In the group case, only stations which match at least one of the nodes in
the list of idents will respond at all, including only their own contribution.
The separate contributions are arranged in original request order and
returned
in a single reply. For this to work best the stations should run
synchronized.

Classic Protocol p 4
Message type 0. Data Reply

+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+--------+
| 0 s | list# | $00= non-server. $08= server. list# identifies request.
+--------+--------+
| status word | reply status return code. 0=no error.
+-----------------+
| reply data |
+-----------------+
| " |
+-----------------+

This example shows the case of 4 data bytes returned. The dest node will
be the node# of the requester node. For requesters that are not local
stations there is no "node#", so this word will be zero. There is a single
status word for the entire reply.

For the specific example given for the request message example, the
following
might be a reply:

0014 message size
0000 (zero dest node# for non-local station requester)
0033 reply type, non-server, list#=$33.
0000 status=0 (no errors)
1234 reading for chan 101
151D reading for chan 102
4866 reading for chan 108

 1230 setting for chan 101
 1508 setting for chan 102

4882 setting for chan 108

Classic Protocol p 5
Message type 3. Data setting

+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+----+---+
| 3 s | 0 |idw| $30= non-server. $38= server. ident size in WORDS.
+--------+----+---+
| ltyp# | 0 0 | listype# for this setting
+--------+--------+
| #bytes | #bytes of setting data
+-----------------+
| ident node# | \
+-----------------+ | setting ident
| ident index# | |
+-----------------+ /
| setting data |
+-----------------+

One setting message targets one device by listype# and ident. An example
of a setting to channel $300 in station 576 would be as follows:

0010 size
0576 dest node
3002 setting, 2 word ident
0100 setting listype#
0002 2 bytes of data
0576 target node#
0300 channel 0300
1234 setting data value

In this non-server case, the dest node of the setting message must match
the target node# in the ident. In the server case, the setting will be
sent (as a non-server message) by the dest node to the target node.

Classic Protocol p 6
Message type 4. Analog alarm

+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+--------+
| 4 0 | 0 0 | analog alarm
+--------+--------+
| channel# | analog channel# in alarm
+-----------------+
| alarm flags | flag bits. bit#8 (mask $0100) is good/bad bit. 1=bad.
+-----------------+
| reading | analog reading
+-----------------+
| setting | analog setting
+-----------------+
| nominal | nominal value
+-----------------+
| tolerance | tolerance value
+-----------------+
| spare | spare word
+--------+--------+
| 'A' | 'B' | analog 6-char channel name (example name='ABCDEF')
+--------+--------+
| 'C' | 'D' |
+-----------------+
| 'E' | 'F' |
+-----------------+
| year | month | time of alarm detected in BCD
+-----------------+
| day | hour |
+-----------------+
| minute | second |
+-----------------+
| cycle | 0 0 |
+-----------------+
| |
+----fullscale----+ reading fullscale conversion constant (IEEE flt pt)
| |
+--------+--------+
| |
+-----offset------+ reading offset conversion constant (IEEE flt pt)
| |
+--------+--------+
| 'V' | 'O' | engineering units text (example='VOLT')
+-----------------+
| 'L' | 'T' |
+-----------------+

An analog alarm message is sent for any good/bad transition of an analog
channel that is in the alarm scan (bit#15 of alarm flags word set). Examine
bit#7 of the alarm flags word for a good(0) or bad(1) message. The analog
alarm scan has a hysteresis to prevent chatter. Once a channel's reading
has
drifted outside the tolerance window from the nominal value, and a "bad"
alarm message is generated, the reading must be found within half a
tolerance

Classic Protocol p 7
before a "good" message is generated.

Inclusion of the scaling constants permits calculation of the reading in
engineering units at the time the alarm (good or bad) message was
generated.
The engineering units scaling is linear and uses the formula:

units = float(raw)*fullscale/32768. + offset

A specific example of an analog alarm message is:

002E size
00F0 group dest node
4000 analog alarm
0150 channel 0150
B000 active(8000), inhibit(2000), two-times(1000), good(0100)
C596 reading
0000 setting (motor-controlled device has no setting value)
C5BC nominal
0064 tolerance
0000 spare
4848 HHVOLT (H- preaccelerator high voltage)
564F
4C54
9208 time of alarm: 08/05/92 1648:03, cycle 14.
0516
4803
1400
44CC fullscale 1638.
C000
0000 offset 0.
0000
4B56 units text 'KV '
2020

The computed engineering units reading value in this case is -747.5 KV.

Classic Protocol p 8
Message type 5. Digital alarm
+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+--------+
| 5 0 | 0 0 | digital alarm
+--------+--------+
| bit# | digital bit# in alarm
+-----------------+
| alarm flags | flag bits. bit#8 (mask $0100) is good/bad bit. 1=bad.
+-----------------+
| 'P' | 'R' | digital 16-char bit text (example='PREACC AIR COND ')
+--------+--------+
| 'E' | 'A' |
+-----------------+
| 'C' | 'C' |
+-----------------+
| ' ' | 'A' |
+--------+--------+
| 'I' | 'R' |
+-----------------+
| ' ' | 'C' |
+--------+--------+
| 'O' | 'N' |
+-----------------+
| 'D' | ' ' |
+-----------------+
| year | month | time of alarm detected in BCD
+-----------------+
| day | hour |
+-----------------+
| minute | second |
+-----------------+
| cycle | 0 0 |
+-----------------+

A specific example of a digital alarm might be as follows:
0022 size
00F0 group dest node
5000 digital alarm
019C bit 019C
C100 active(8000), nominal=1(4000), bad(0100)
4354 bit text (16 chars) 'CTF NTFREQ '
4620
4E54
4652
4551
2020
2020
2020
9208 time of alarm: 08/07/92 1115:22, cycle 1.
0711
1522
0100

Classic Protocol p 9
Message type 6. Comment alarm
+-----------------+
| message size | message size (including this word) in bytes
+-----------------+
| dest node# | node# to which this message sent.
+--------+--------+
| 6 0 | 0 0 | comment alarm
+--------+--------+
| comment# | comment index# of alarm
+-----------------+
| alarm flags | flag bits. (no good/bad bit for comments)
+-----------------+
| 'V' | 'M' | comment 16-char text (example='VME ALARM RESET ')
+--------+--------+
| 'E' | ' ' |
+-----------------+
| 'A' | 'L' |
+-----------------+
| 'A' | 'R' |
+--------+--------+
| 'M' | ' ' |
+-----------------+
| 'R' | 'E' |
+--------+--------+
| 'S' | 'E' |
+-----------------+
| 'T' | ' ' |
+-----------------+
| year | month | time of alarm detected in BCD
+-----------------+
| day | hour |
+-----------------+
| minute | second |
+-----------------+
| cycle | 0 0 |
+-----------------+

There are only two comment alarms in current use. One is the system reset
message, and the other is the alarms reset message. A specific example of a
comment alarm might be as follows:

0022 size
00F0 group dest node
6000 digital alarm
0000 comment index 0
8000 active(8000)
564D comment text (16 chars) 'VME SYSTEM RESET'
4520
5359
5354
454D
2052
4553
4554
9208 time of alarm: 08/07/92 1129:20, cycle 5.
0711
2920
0500

 IP Fragmentation
Implementation scheme

Mon, June 26, 1992

Internet Protocol (IP) specifies support for fragmentation and reassembly of
packets to form datagrams. The implementation for IP support in the local
stations must include this feature. This note discusses how it is done.

Maximum datagram size
Theoretically an IP datagram, including the IP header plus message, can be

64K bytes in length. In practice, however, some implementations put a smaller
upper limit for reasons of memory constraints and economy. According to
Douglas Comer, a general expert in the field, timesharing systems typically
choose values in the range of 4K–8K bytes. (See “Internetwork ing with TCP/IP

Volume II” page 32.) With the token ring 4Mb network, the hardware frame
length limit is about 4K bytes, so it is natural to consider adopting a local limit of
4K bytes for the maximum datagram size. The ethernet frame size limit is 1500
bytes, which is too low to consider for a datagram size limitation.

A limit of about 2004 bytes is detectible sending “multinet ping” requests from
the Vax. (It may only be a ping client program limit.) The Vax limit on datagram
replies to ping requests is at least 5000 bytes, the limit of the local station’s
current software. The Vax’s UDP echo server limit seems to be 4144 bytes.

MTU size
Separate from the issue of datagram size limit is the choice of Maxi mum

Transmission Unit, or MTU. This is the limit on fragment size transmitted on a
physical network. With ethernet networks this limit is almost always 1500 bytes,
the same as the hardware frame limit. In the Sun that uses the SBus token ring
board, the MTU seems to be 2044 bytes for the size of the IP datagram. From RFC-
1122, it is recommended that one choose an MTU for use with foreign net works
(destination network id different from local) that is 576 bytes, a generally accep
table limit in use throughout the world-wide Internet. From tests with some far-
away IP nodes, however, it seems that 1448 byte datagrams work without further
fragmentation being imposed.

Whatever the local decision is regarding maximum datagram size and MTU, it is
necessary to support reassembly of IP packet fragments. So this support is
needed for the local station IP support software.

Reassembly
The local station uses the IPARP table to hold IP addresses and hardware

addresses and related port#s. The IP address is the key to this table. An entry in
this table is given by a pseudo node# word, which is an index to a table entry
and also identifies a port#; thus, it fulfills a function analogous to a socket.

IP Fragmentation July 12, 1996 page 2
When an IP fragment is received, specified by the MF (more fragments) bit set in
the IP header and/or a nonzero fragment offset value, something special must be
done with it; otherwise, it simply remains in the DMA buffer written into by the
chipset to await higher level processing. To support fragments, it is necessary to
use a timeout in case not all fragments arrive that are to build a datagram. After
each fragment is received, the timer should be reset. A timeout commonly in use
is about 60 seconds. After a timeout, the fragments must be discarded. (If frag
ment #0 has been received at that time, then an ICMP “time exceeded” error mes
sage is sent to the source host. See RFC-1122.) The point is that fragments may
have to wait a long time before they can be built into a datagram, so they can not
remain in the 64K DMA buffer, which can wrap in a second or so under heavy
traffic. Allocated memory can hold the fragment for later reassembly.

It is not convenient to build the datagram as the fragments are received, because
the total size of the expected datagram is unknown until the last fragment has
been received that has a zero MF bit. If one allocates a datagram buffer of
maximum size, however, it should be possible to do assemble the packets as they
are received. To make it more interesting, the order of fragment arrival is not
guaranteed, although this is not expected to be a problem within Fermilab.

If the maximum size buffer allocation is not used, then one can build a linked list
for each datagram whose fragments are in the process of being collected. Frag
ments belong to the same datagram if they have the same source IP address and
the same identification word in the fragment’s IP header. The linked list can be
maintained in order of fragment offset to simplify detection of the point at which
all frag ments have been received. When the datagram is complete, another area
of memory can be used to hold the complete datagram, as higher level process
ing must see the entire datagram in contiguous memory.

In the local station implementation, the SNAP Task handles IP received packet
processing. If the routine that processes a fragment detects a completed data
gram, it assembles it and sends a reference message about it to the SNAP message
queue, just as the token receive interrupt routine normally does when it receives
a SNAP frame. (The SNAP protocol SAP# $AA is used currently only for IP and ARP

packets on token ring.) Then SNAP will notice a larger-than-normal datagram that
is unfragmented and process it normally. For either ICMP or UDP datagrams, the
checksum will be done on the entire datagram.

Fragmentation
Although gateways will fragment datagrams as needed, it is considered kind

for hosts to fragment outgoing datagrams so that gateways can pass the
fragments without having to further trim their sizes. Fragmentation support is
required to support datagram sizes that exceed the local network frame size

IP Fragmentation July 12, 1996 page 3
datagram is prepared to be sent, the transmit logic decides, based upon the
destination IP address, that an MTU should be applied that is smaller than the
datagram size. In this case, separate frames are built for each fragment, each one
with an IP header. Each is queued in turn to the network hardware.

When fragmentation is applied, the message part of the fragment—except for the
final one—must be a multiple of 8 bytes in size. (This is required because the
fragment offset field in the IP header is expressed in 8-byte units.) Since the IP
header part of the fragment is typically 20 bytes long, the maximum fragment
size may be slightly smaller than the MTU. (This insures that the implementer is
paying attention.)

The NetXmit routine assembles queued network messages into frames for
delivery to the network hardware. When it has prepared the frame completely, it
can make the decision on fragmentation. If the network id in the destination IP
address is the local network, a different MTU is used from that used when the
network is foreign. Use of different MTU values for both the local subnet and the
rest of the Fermilab network is also supported.

Since the complete datagram is already assembled in the frame buffer ready to be
transmitted before it is determined that it must be fragmented, the first fragment
can be sent from the first part of the datagram, after adjusting for the fragment
size in the IP header, setting the MF bit, and recalculating the IP checksum. The
additional fragments can be built into new frame buffer space by copying the
frame/IP/SNAP headers and the next fragment-size part of the message.

IPARP Table
IP global data structure

Wed, June 29, 1992

Every network node that supports Internet Protocol (IP)
communications maintains an ARP table to relate IP addresses to
hardware addresses. In the case of the local station’s IP support, it
also provides the “node#” that is used to reference that node (if it is a
front end data source), and the port#s in use by that node. A “pseudo
node#” is used to refer to a port of a node. It provides a functionality
similar to that of an internet socket. This note describes how the
IPARP table is used by the local station system to support IP .

Procedure InzIPARP;

At reset time, if no 'IP ' exists in the first word of the IPARP table,
which is system table#28, initialize the table and clear all entries;
otherwise, clear the port# block ptrs in all entries. Although IP
addresses are saved across resets, port# assignments for pseudo
node#s are not. If the table header includes a nonzero IP address and
netMask, then establish a ptr to the IPARP table in a system global
variable. Note that when the table is first established and all entries
are cleared, the header is also cleared. The local station’s IP address
and network mask must be entered manually and the system reset
again, in order to enable IP support. See installation section.

Function PsNIPARP(port: Integer; ipA: Longint; VAR netA: NetAddrType):

Integer;

This function is used when an IP (or ARP) datagram is received and
processed by the SNAP task. If it is a UDP datagram, the source port#
is specified in the call; otherwise, port#0 is used. The table is
searched for a match on the source IP address (or sender’s IP address
in the case of an ARP message), and the hardware address is updated
there. If it is not in the table, a new entry is added to the table to
hold this information. If there is no allocated port# block for the
entry, then one is allocated. For UDP, the port# is installed in the
port# block, if it is not already there. The returned value is the
pseudo node# that is used to reference the entry. The format of the
pseudo node# is chosen so that it does not conflict with node#s in
current use among accelerator nodes. This uniqueness is used to
denote that IP encapsulation is needed when sending the message on
the network, and by reference to the IPARP table entry, the
parameters of that encapsulation.The current form of the pseudo
node# is $6nnp, where nn is the table entry# in the range 2–255, and

IPARP Table July 12, 1996 page 2
range is 1–15.) In the case of an error, a zero is returned. The IPARP

table entry is 16 bytes as follows:

^IPPORTS

NODE#

IPADDR

NETADDR

Function GetIPARP(pNode: Integer; VAR port: Integer; VAR node: Integer;

VAR ipA: Longint; VAR netA: NetAddrType): Integer;

When a frame is due to be transmitted, and the frame header is
being built, this function retrieves the IP address, network address,
node# and port#, from the IPARP table entry specified by the pseudo
node#. These values are used to build the IP header and UDP header
of the datagram. The node# is used to replace the pseudo node# used
as the destination node field in the acnet header and classic protocol
cases.

Function IncIPARP(pNode: Integer): Integer;

Function DecIPARP(pNode: Integer): Integer;

For each port# registered in the port# block associated with a given
IP node, there is a use count. These two functions operate on the use
count pointed to by the given pseudo node#, which provides for
support of multiple requests from a given UDP source port. When a
data request is initialized, and a ptr to its request memory block is
inserted into the chain of active requests, IncIPARP is used to
advance the use count associated with the target port for the reply.
When the request is cancelled, and the request is removed from the
active chain, then DecIPARP is used to reduce the use count. In this
way, the available 15 port# slots associated with an IP node can be
reused as needed.

Function NodIPARP(pNode: Integer; node: Integer): Integer;

The concept of a node# word is used in both acnet and classic data
request protocols. At the time PsNIPARP is called by the SNAP task,
any node# specified in the message is unknown. When higher level
acnet protocol handling determines what the source node# is, then it
can use this function to update the node# word in the IPARP table
entry.

IPARP Table July 12, 1996 page 3

Procedure TimIPARP;

Every second, the QMonitor Task calls this routine to perform
timeout logic on IP communications. TimIPARP scans all active IPARP

entries and counts down the timeout word in the port# block header.
The timeout word is reset to a large value (currently 4000 seconds)
every time the port# block is referenced by PsNIPARP or GetIPARP

calls. Thus, when it reaches zero, it means no ports have been used
for a long time with that IP node, so the block is released.

With the implementation of fragmentation and reassembly,
additional timeout logic has been included in TimIPARP. When IP
fragments are received, they are timed out in case not all fragments
are received to make a complete datagram. Each time a fragment is
received that is part of a given datagram, a timeout count is reset to
a large value, which is currently 60 seconds. After that time, the
fragment blocks are released, and a “time exceeded” ICMP error
message is returned to the sending host.

When all IP fragments have been received for a given datagram, a
complete datagram is built and passed to the SNAP Task via its
message queue, just as if the entire datagram were received from the
network. The block containing the complete datagram is timed out in
case its associated message counter is not reduced to zero. (The
message count word should be decremented by every program or
task when it is finished processing the message; this can be done
automatically by NetRead, NetRecv, UDPRead, UDPRecv, or by Classic
Task processing, depending on the protocol used.) The current value
for timing out completed datagram blocks that are unused is 60
seconds. Normally, the datagram block is released within one second
after the message count word is reduced to zero by the next call to
TimIPARP.

Function FrgIPARP(pNode: Integer; dIdent: Integer;

fragPtr: FBlkPtr; VAR dgPtr: DgPtrType); Integer;

This routine is called by the SNAP Task to handle IP fragment
processing. The pNode parameter is the pseudo node# returned from
a call to PsNIPARP. The dIdent is the identification field from the
fragment IP header that identifies the datagram of which it is only a
fragment. The fragPtr argument is a ptr to a fragment block that
holds a copy of the received fragment. The dgPtr variable is set to a

IPARP Table July 12, 1996 page 4
ptr to the completed datagram block in the case that this fragment
makes the datagram complete. See the document Fragmentation and
Reassembly for more details on this.

The IPARP table header format is as follows:

IPADDRS

DEFGATE

NETMASK

MTULOC MTUEXT

The local station IP address must be entered into the table manually.
Since IPARP is in non-volatile memory, it should not thereafter need
to be changed. In addition, the subnet mask is kept there and an IP
address of the optional default gateway. When a datagram is to be
sent to an IP address destination for which there is no known
hardware address,, a check is made using the local station IP address
and the subnet mask to determine whether the target IP node is on
the same subnetwork. If it is, then an ARP request message is sent to
obtain the hardware address. If it is not, then the default gateway IP
address is used to look up the gateway’s hardware address. (If there
is none as yet, an ARP request is sent to obtain it.) The message is
then sent to the gateway’s hardware address.

At the time this is written, when an ARP request must be sent, the
datagram to be sent to the target node is discarded. Since the IPARP

table entries are not timed out, this is not expected to be a problem.
If it is, then a means of queuing up, and timing out, datagrams
awaiting ARP responses must be found. With no means of timing out
IPARP entries, it is possible for stale information to accumulate there.
If a node changes its hardware address, for example, and it is on the
same subnet as the local station, then the table entry would have to
be manually cleared for that IP node. Again, if this causes problems,
we may have to implement a time out for the IPARP table entries.
Both this timeout and the queuing of datagrams awaiting ARP

responses should probably be implemented at the same time.

It is hoped that 254 table entries, which means 254 IP addresses,
will be enough for the local stations to keep track of. If it is not, then
this would be another reason to implement a timeout on the IPARP

table entries.

With no timeout of IPARP table entries, it is still ok for a station to
change its hardware address, if that station sends a request to the

IPARP Table July 12, 1996 page 5
local station. The hardware address used in the request message will
update the IPARP table entry for that same IP address. If the change
is in the IP address, a new entry will be automatically added to the
table. If an IPARP table entry is cleared manually, the entry will be
available for re-use.

Installation
When installing IP support for the first time, install the table #28

as 256 entries of 16 bytes each in the system table directory. After
reset, the table will be initialized, but no IP address will be in its
header. Install the IP address, subnet mask, and the default gateway
address. Reset again. One other important item: install the SAP table
entry#2 as $AA, or no SNAP (IP) frames can be received!

IP Multicast Addresses
Catalog of those in use for IRMs

Wed, Jun 18, 1997

A range of IP multicast addresses was assigned by networking for use by IRMs here
at Fermilab. They are 239.128.02.xxx. The software in IRMs supports up to 15 of
these, plus broadcast. They are selected for transmission by node#s 09Fx, where
09FF always means broadcast as used for ARP requests. This table shows the current
usage of such addresses:

09F0 PET alarms
09F1
09F2 A0 alarms
09F3
09F4
09F5
09F6
09F7
09F8
09F9 All IRM nodes
09FA All PET nodes
09FB All BRF nodes (Booster HLRF)
09FC All A0 nodes (Tesla/Photo-Injector)
09FD
09FE
09FF (broadcast)

In the non-volatile memory of IRMs there is a table of 16 entries that corresponds to
the above list. Each 8-byte entry contains a multicast hardware address and a
diagnostic count of the number of frames transmitted to that destination multicast
address. As an example, here is the table from a PET node:

0584:405B80 0100 5E00 02F0 0000
0584:405B88 0000 0000 0000 0000
0584:405B90 0000 0000 0000 0000
0584:405B98 0000 0000 0000 0000
0584:405BA0 0000 0000 0000 0000
0584:405BA8 0000 0000 0000 0000
0584:405BB0 0000 0000 0000 0000
0584:405BB8 0000 0000 0000 0000
0584:405BC0 0000 0000 0000 0000
0584:405BC8 0100 5E00 02F9 0000
0584:405BD0 0100 5E00 02FA 0000
0584:405BD8 0000 0000 0000 0000
0584:405BE0 0000 0000 0000 0000
0584:405BE8 0000 0000 0000 0000
0584:405BF0 0000 0000 0000 0000
0584:405BF8 FFFF FFFF FFFF 038B

The ethernet multicast addresses used conform to the ethernet convention for IP
multicast. The upper 25 bits are fixed to the value 0100 5E as shown. The lower 23
bits match the lower 23 bits of the corresponding IP multicast address. In our case,
this is 00 02Fx. As a specific example, this node can access all other PET nodes by

IP Multicast Addresses p 2

The IP multicast (Class D) address used would be 239.128.2.250, or $EF8002FA. In
order for a node to be able to use a given IP multicast address for transmission, the
corresponding ethernet multicast address must be installed in the above table.

For a node to be able to receive from a given multicast address, the address must be
in a different table that has room for up to 8 different ethernet multicast addresses.
Looking at the same node used in the above example, we have:

0584:405240 0100 5E00 0001 00BB
0584:405248 0100 5E00 02F9 00D4
0584:405250 0100 5E00 02FA 00C7
0584:405258 0000 0000 0000 0000
0584:405260 0000 0000 0000 0000
0584:405268 0000 0000 0000 0000
0584:405270 0000 0000 0000 0000
0584:405278 0000 0000 0000 0000

In order to participate in the IGMP protocol that is used by multicast routers to
determine whether to pass multicast IP datagrams onto its connected networks,
each node must listen for the "all hosts" multicast address 224.0.0.1, which uses
the ethernet address 0100 5E00 0001 in the first entry of this table. The last two
bytes in each 8-byte entry are a delay counter byte and a diagnostic counter that
counts the reception of frames addressed to the given ethernet multicast address.
Once each minute, the multicast router sends an IGMP request message to the "all
hosts" address that asks the question, "what IP multicast addresses are of interest
for the nodes on this network?" Each node that receives this request schedules an
IGMP reply message to be sent after a random delay over the following 10 seconds.
This is done for each multicast address in this table (but not for the "all hosts"
address). The delay counter byte is set to a random value for each entry in use. For
IRMs, the delay function is provided by decrementing this byte each 15 Hz cycle. If
the counter byte reaches zero, an IGMP reply is sent to the same multicast address.
(The router will see this because it can see all multicast frames.) Because the reply
is targeted to the same multicast address in which the node is announcing its
interest, any other node on the connected network that has the same interest will
also receive the reply message; as it does so, it will cancel its own intent to transmit
the same reply. In this way, minimal network traffic is required to keep the router
up-to-date on which multicast addresses are needed on that connected network.
(The router only needs to know if any node on a connected network has an interest
in a given multicast address. It doesn't care which ones or even how many such
nodes there are. One node's interest is enough to force the router to pass such
addressed IP datagrams.)

Entries to be added to the above non-volatile table of multicast addresses enabled
for reception are made manually as a part of system configuration. Changes to the

IP Multicast Addresses p 3

table may be made during system operation, and such changes will become effective
right away. The system maintains a checksum of the multicast addresses in the
table that it calculates about once a second. If it notices a change in the computed
checksum value, it builds a new Multicast Setup command and sends it to the
ethernet controller chip, an Intel 82596 on the MVME162 board. When it does so, it
also sends a diagnostic Dump command that causes the chip to write a 300-byte
record of various internal information it keeps. Within this block can be found the
contents of the 64-bit hash register that is used for filtering multicast-addressed
frames that the controller chip sees on the network. As soon as the chip detects a
destination multicast address at the start of an ethernet frame, it hashes the 48-bit
address into a 6-bit value. If the corresponding bit in the hash register is set, the
frame is accepted, else it is rejected. Because this scheme permits reception of
multicast addresses that may only coincidentally hash to the same 6-bit code of
another that is in use, the network software must check that a received multicast
frame is really addressed to a multicast address of interest, ignoring it if it is not.
To that end, the above table is scanned by the ethernet receive interrupt software
for multicast-addressed frames. But in order to derive maximum benefit of chip-
level filtering of multicast frames, one may prefer to select multicast addresses to be
used in a given installation so that they do not correspond to matching 6-bit hash
codes. To do this, it is useful to examine the hash register contents in the 300-byte
Dump area at $1600C0. Here is the beginning of that area in the same node above:

0584:1600C0 7F2E 0060 00F2 0000
0584:1600C8 40FF 003F FFFF 0240
0584:1600D0 0000 0584 0020 83B7
0584:1600D8 3117 9A3F C228 0000
0584:1600E0 0400 42A6 1220 1000
0584:1600E8 0000 0000 1100 D586
0584:1600F0 05FC 0C00 FFFF FFFF
0584:1600F8 0000 0000 00C0 0016

The hash table register is located at offset $26, where we find 1000 0000 0000 1100.
Thus, the register has three bits set, so that each multicast address uses a different
hash code.

Specification of common usage of multicast addresses in IRMs is done via two node#s
in yet another non-volatile table. The first is the "broadcast" node# that is used
when an IRM must perform a device name lookup when it cannot find the name in
its own device tables. This same node# is also used when an IRM must send a data
request that is to be targeted to more than one other node. (Using multicast for this
means that only a single message need be sent, rather than one to each node
represented in the request message.) The second node# that may be specified is the
target node# for Classic protocol alarm messages. Again, as an example, here is
what is in that table for the above PET node:

IP Multicast Addresses p 4

0584:402000 0A00 D400 09FA 09F0

The "broadcast" node#, at $402004, is 09FA.
The alarms target node#, at $402006, is 09F0.

By configuring sets of nodes to use different multicast addresses, we can permit
each set of nodes to operate in its own network world. This means that IRMs from
different sets may use the same 60-character device names, for example. It also
means that when the "broadcast" node# is used to send requests for devices from
multiple other nodes, such requests will be seen only by the nodes within a set. For
example, PET device names could match Booster device names, if desired. A node in
the A0 set would not be constrained to use device names that are neither used in
Booster HLRF nor in PET. And PET alarm messages received by an alarm handler
will not have to filter out Booster HLRF alarm messages. IRMs have found to be
generally useful front ends that can serve in various projects, even independent of
Acnet. Some of these front ends are ultimately shipped to different labs even in
other countries.

 IP Security
“Safe sets” for the local stations

Tue, Jun 30, 1992

Introduction
With the addition of IP support for the local stations, the issue of protection

from unexpected settings takes on a new dimension. The Internet is a world-wide
network; thus it is possible to access the local stations from anywhere on earth.
While reading access presents no problem at this time, setting access is not
desired. This note discusses a means of restricting setting access to the local
stations while allowing unrestricted reading access.

Router blocking
One means of protection would deny IP datagram routing to any local station

from outside Fermilab. This would certainly provide protection, but it also denies
reading access, since Internet Protocol has no concept of a setting message as we
use it in accelerator control. Only higher level layers of the control system proto
cols recognize the distinction between a request for data and a setting to a device.
Use of a router-based scheme may also be inflexible and difficult to maintain.

Trusted host solution
In unix systems, there is a file called “/etc/hosts.equiv” that contains a

list of nodes that are “trusted” to perform operations that may be denied to other
hosts. In the same spirit, the local stations may keep a table of trusted hosts that
would be allowed setting access to devices. As the total number of hosts may be
large, it may be more convenient to allow access by subnetworks to reduce the
size of the table and the processing required to interpret it. A table entry may
look like this:

host/net IP address mask

When a setting is to be performed in response to an IP-based network message in
any of the three device protocols (Classic, D0, Accelerator), the entries in this
table are scanned. For each nonzero entry, the source IP address (from the IP
header of the setting message) is EOR’d with the host/IP address field and AND’d
with the mask field. In this way, entire networks or subnetworks can be repre sen
ted by a single table entry. Setting access by individual hosts can also be accom
modated using a mask of all ones.

Diagnostics
The implementation of setting limitations may provide a chance to include

diagnostic information as well. Counts of the number of settings accepted via IP-
based access can be kept for the three device protocols supported: Classic, D0
and Accelerator. In addition, the IP source address used by the last such setting
and the time-of-day could also be included. Since this is a security issue, one

IP Security July 12, 1996 page 2
the time-of-day that it was attempted. A 64-byte entry for this info:

host/net IP address mask

time-of-day of last setting accepted

time-of-day of last setting denied

IP address accepted

count IP address denied

data (up to 4 bytes)

count-classic

#bytes

count-D0

ident-channel/address

count-accelerator

—

listype node#

Table maintenance
Using the above data structure, it is obvious that only the first two fields are

static; the rest are dynamic. It is likely that many local stations will have the same
table (static part). This stems from the fact that network access to one local station
has always given access to any other. As we download local applications, we can
also download the static part of this table. To maintain it and be able to edit the
table requires access to the appropriate software development tools such as MPW.
Making a change would require the same effort as changing a local appli cation
program. The HELPLOOP “text file,” providing the prompt text for config uring
parameters of local applications, was implemented in this way, although it was
installed in only one station, accessible from the rest. Use of group addres sing
makes it easy to update the table in, for example, all Linac stations at once.

 IP Support
Internet protocols for local stations

July 12, 1996

Introduction
In recent years, the internet protocol standard has grown by leaps and

bounds. Because support for it is included with every workstation, it is natural to
consider providing this support for the local station systems, in order to make it
easier to write support for data requests and settings to a control system. This
note is a working document that assumes some TCP/IP familiarity.

Note that internet protocol support is only a beginning for a host; the data
request protocols must be built on top of any internet protocol used. The
fundamental node-node communications is supported by IP, Internet Protocol. In
order to make the network accessible to a user, an entity within a node, a higher
level is needed. Above IP, the TCP/IP protocol suite includes two basic types of
data communications: stream-oriented (TCP) and datagram-oriented (UDP). Each
of these types is suited for different applications, yet higher level protocols.

The stream-oriented protocol (TCP) refers to a byte stream of data. Network
messages that support the byte stream have no built-in boundaries at all, so a
user of TCP must build that into the higher layers. It does, however, insure that
the byte stream arrives in the same order as the byte stream that was sent, by use
of sliding window acknowledgements. If it were important to support Telnet,
FTP, or SMTP with the local control stations, then TCP support would be required.

The datagram-oriented protocol (UDP) is used to transport a record, called a
datagram, across a network. It is sent on a best efforts basis, with no guarantee
that the datagram arrives at the receiving node nor that a succession of data
grams arrives in order. For a control system, which is fundamentally record-
oriented, the datagram approach has appeal. The lack of a guarantee that the
datagram reached its destination node is mitigated by the reply to a data request,
or the acknow ledg ment to a setting. The lack of guarantee of the order is really
only a problem for very large internets and is unlikely to be a problem in practice
within a single laboratory. (If one were attempting to do 15 Hz control from
Sweden, for example, there might be need for more concern.) Protocols that
expect to use UDP are NFS, RPC, SNMP, and TFTP.

In view of the above arguments, assume that a data request/setting protocol is
built on top of UDP, the datagram protocol.

IP Support July 12, 1996 page 2
Token ring frame format for IP

What is the frame format of IP datagrams on the token ring network?
According to RFC-1042, the format uses the SNAP variation of the 802.2 header.
This means that the DSAP and SSAP are $AA, the control byte is $03 (UI), the next
three bytes are the organization code $000000, and the last two bytes are the same
as the Ethernet type word. For IP frames, this is $0800. For ARP, it is $0806.

IP datagrams
What does the IP layer do? Its job is to send a datagram, limited to 64K bytes

in length, to another node across an internet. This might imply that fragmen
tation would occur. So the IP Task must support fragmentation and reassembly.
In the current local station software, there is convenient support for frame
reception passed to a receiving task. If no fragmentation takes place, then the
current support for network messages largely takes care of itself, assuming that
the protocols within the UDP header are the same as those handled now. If
fragmentation occurs, so that a fragment is received that does not represent the
entire datagram, then the fragment must be copied into a datagram buffer of
larger size. This will make it slower, of course, but is probably unavoidable.
When the complete datagram has been assembled, it can be passed to the
destination task. As a first step in support, one could ignore fragmen tation on
the token ring network. Data requests/replies have, until now, always been
limited to about 4K bytes, the maximum frame size for token ring. (Since this was
first written, fragmentation support was added 6/23/92.)

For frame transmission, there must be some means of denoting that IP packaging
is required. This must include a way to keep the port# of the requester as well as
the requesting node. A pseudo-node# can be used as the source node of the
request that can help recover the original requester's UDP source port#.

The idea here is that support for the present suite of protocols remains and is
only enhanced by the addition of IP and UDP support. These provides an optional
wrapper for the usual protocols. To support both Classic and Acnet-header-
based protocols, two different well-known UDP server ports are used.

Address resolution
What about ARP? The Address Resolution Protocol is used to find the

hardware address that corresponds to a given IP address in the case that the IP
address is on the same subnetwork. This request is broadcast with a special value
for the type word ($0806), in hopes that a node will answer with the hardware
address that corresponds to the given IP address.

What about ARP processing? If we need to send an ARP, it's one more comp
lication, because it means that the frame cannot be transmitted until a reply is

IP Support July 12, 1996 page 3
often worry about sending a message to a hitherto unknown node.

The ARP table entries are usually timed out, in order to accommodate changes in
network addresses. If this is done, it will become important to support queuing
of datagrams awaiting ARP replies. At first, we can keep ARP table entries forever
and not support datagram queuing.

IP addresses
When a message is received, a node# must somehow be assigned to it. If the

requesting node does not use the 40020000ttnn convention, then it might be an
Ethernet console with node# 08xx using the 55002000yy17 convention, in
which the yy is the bit-reversed value of nn. There is a table of Ethernet
addresses that correspond to 0800–08EF. If we can use some of that space for
dynamically assigned IP requesters, it would provide a natural place to store the
hardware address. But what about the IP address? When NetXmit has a 08zz
node#, it can find the right hardware address, say, but where can it find the IP
address? Of course, it was in the request message, but where can it be stored for
later retrieval? A different table should be used for this, one that is kept in non-
volatile memory and filled whenever a frame is received from an IP address.

When a frame is received that uses IP or ARP protocols, capture the hardware
address from the frame header and the IP address from the IP header and the UDP

port# from the UDP header. Search the table for a match on these values. If none
is found, install a new entry. Assign an internal node# and replace the source
node# in the acnet header with it. In this way, a request message can be
processed normally and the reply queued to the network using this internal
node# as a destination. The NetXmit logic can use it as a signal to send an IP
datagram and to recover the other information for building the frame header. See
the document IPARP Table for more discussion on the table's implementation.

IP Support July 12, 1996 page 4
The IP and UDP headers have the following formats:

ver

frag offset

lng TOS

total length

identification

flg

TTL proto

hdr cksm

source
IP address

destination
IP address

checksum

UDP length

dest port

source port

IP UDP

The ver is the IP protocol header version number $04, the lng is the number of
longwords in the header, between 5 and 15, but usually 5. The type-of-service byte
can be ignored initially and built as a constant (0) for transmission. The total
length is the #bytes in the datagram, including both the IP header and the rest of
the datagram. The identification is a word that is a sequence# of IP datagram sent
by the source node. It has the same value in all fragments of a datagram. The flg
bits and frag offset are used for fragmentation. The don't fragment flag bit prevents
a gateway from forwarding a fragmented datagram. A more fragments flag bit
indicates that this fragment is not the last one. It is only when a fragment of a
datagram that contains the more fragments bit clear that IP learns the length of the
entire datagram.

ICMP support
This is the error reporting mechanism. It is based upon IP just as UDP is, but it

is a required part of IP support. It provides a “ping” echo service, for one. Error
messages should be directed to the original source node in general, since the
route taken by the message in error is not available. Care should be taken to use
ICMP error replies only in situations specified by RFC-1122 recommendations.

IP Support July 12, 1996 page 5
The format of the ICMP message is as follows:

checksum

identifier

sequence#

type code

ICMP

Network messages in local station
Local station network handling is a higher level of support than either IP or

UDP, in the sense that it is message-based and not frame-based. An application
using the network routines does not see the frame boundaries, although it can
flush the network queue to force a frame boundary. It usually deals with
messages that it receives from (or queues to) the network. All current network-
related applications have this message-oriented view. Also, they can generate
either Classic protocol messages or Acnet protocol messages. It is desirable to not
break this mechanism by the intro duction of IP support. This means that frame
transmission using IP datagram frames must be automatically determined by
NetXmit logic, which extracts all queued network messages, combines them into
frames and hands them over to the token ring chipset hardware.

Frame formats used by local station
How can NetXmit decide what type of frame header to use? The difference

between Classic and Acnet is decided by the memory block type# that holds the
queued message. But we also need to communicate using ARP and ICMP, so these
may require an additional memory block type# that can be queued to the
network that would cause NetXmit to formulate those frames appropriately.
Also, one must insure that ARP and ICMP messages are not combined with others
in a common frame, as no host will expect it. For the UDP frames we are
discussing, multiple messages can be supported in the same frame because, to a
host that receives such a frame, it is only a single message sent to a server UDP

port. The port handling logic will identify the messages of, say, Acnet format and
dispatch them to the appropriate network tasks.

Fast Time Plot Data Acquisition
Faster than 15 Hz

Fri, Jan 14, 1994

The analog IndustryPack module used in the Internet Rack Monitor (IRM)
includes support for recording 1 KHz samples of 64 A/D channels in a 64K
byte circular buffer. The buffer wraps in 512 ms. It is desired to access
such data for the purpose of making plots. In the Acnet control system, the
Fast Time Plot protocol (FTPMAN) is used to acquire this data from the front
ends. A console requests data to be delivered at 15 Hz down to 2 Hz. In
principle, the console could collect 1 KHz data, but it limits its Continuous
mode plotting support to 720 Hz data. In the “Auto” mode, the limit is 200
Hz. Faster rates must be accessed via the Snapshot mode.

The SSDN that is sent in FTP’s Timing Info Request message is the same
SSDN that is used when the named device is called up for display on a
Parameter Page. In order to access the data from the analog IP board,
FTPMAN must somehow derive the class code that describes what plotting
support is allowed for the given signal. To deliver the plotting data, both
the 64K memory that holds the 1 KHz data as well as the register block for
the IP board must also be determined. But the SSDN now contains only the
analog channel number that points to the data pool.

One possibility would be to utilize a spare byte that has so far not been
used in the SSDN data structure. This would require changing the off-line
uploading program that updates the Acnet database with changes made in
a local station. How can the uploading program determine in what set of 64
channels a given channel resides, if indeed it resides in any set of 64
channels from an analog IP board. One could use a spare byte in the analog
descriptor for this purpose. And one could assume that the low 6 bits of
the channel number indicate which channel out of a 64-channel set is
being referenced. It would seem wasteful to use the spare byte for this
purpose, however, as each channel in a 64-channel range would have to be
marked in the same way. Perhaps a small table of channel # ranges could
relate to the memory and register block locations.

A simpler approach might be to fix the ranges of channels used for
available IP boards. An IRM can have one or two such boards. But a VME-
based station that uses IP carrier boards might have more.

Another concern is to provide support for up to 1 KHz data via a new
listype. In this case, an ident format must be defined. It could include the
type of 64-channel block. But how can the user enter this information, say,
on the Macintosh Parameter Page? The support code for this listype could
return data in a format similar to that used for data stream returned data.

Fast Time Plot Data Acquisition p. 2
returned for each ident. The internal pointer could include the 16-bit
offset of the next datum to be collected, so that each update would begin
where the last one ended in access to the circular memory buffer.

A simple approach can be as follows: Assume that channel#s 0100–013F are
supported by the IP module in slot d, in which the base address of the
memory is 00630000 and the register block is at FFF58300. For channel#s in
the range 0140–017F, assume the IP module is in slot c, the memory base
address is 00620000 and the register block location is FFF58200. For VME-
based stations that do not use IP modules, these channels could not be
assigned; at least no one could try to FTP them. This scheme could work for
IRMs that have 64 or 128 channels.

In order to collect data that is measured at times relative to clock events, a
different plan should be adopted. If the reply data includes a 32-bit time
associated with the first point, and a second 32-bit number that is the time
between the two most recent events used for this request, then including a
timestamp with each data point that is the time measured from the most
recent one of those events would allow for 16-bit timestamps. The host
program would need to add each time offset to the time of the first point
to get the plotting time value. If this sum is greater than the given event
time difference, then subtract this event time difference from the sum to
get the time value suitable for plotting the data point. Note that by
definition the first time offset would be zero.

Assume that we get an interrupt whenever a clock event is written into a
FIFO. In response to the interrupt, sample the 1 MHz free-running timer on
the MCchip on the 162 board and save it in an array of 256 entries, one for
each clock event. Besides the sampled time of each event, also measure the
time between such events. This time between the two most recent events
would be used in replies for the plot data described above.

IRM Installation and Configuration
Thu, Dec 30, 1993

Several steps must be taken to bring up a new local-station/IRM based
upon the MVME-162 board. These are notes based upon experience in
setting up node 561.

Be sure that the J20 jumpers are set to provide backup battery power for
the on-board non-volatile memory. The two jumpers should be positioned
away from the VMEbus P2 connector.

Make sure that a digital IndustryPack module is installed in slot B. If it is
not, the system cannot run successfully.

Via the 162bug command pf 0 and pf 1, select the baud rate for the 162
board console and host serial ports, respectively, to 19200, or whatever
desired.

Via 162bug command cnfg;m, set the ethernet hardware address to be
used. For example, enter 024000000561.

Via 162bug command env, change several parameters to match those used
in another 162-based station. One key item is the Network Auto Boot
Configuration Parameters Pointer, which should be set to FFFC1000.

Via 162bug command niot, set network parameters, such as
Node Control Memory Address 001E0000

Client IP Address 131.225.123.214
Server IP Address 131.225.123.215
Subnet IP Address Mask 255.255.0.0
Gateway IP Address 131.225.126.200
Boot File Name system

Boot File Load Address 120000

Boot File Execution Address 120000

 The 162bug command set mmddyyhhmm turns on the real time clock. This is
needed for timing during the following TFTP transfer.

The 162bug command nbh downloads the system code. The TFTP protocol is
used to transfer the system code known by the filename “system”.

Use the 162bug command bf FFE00000:40000 0 in order to clear out all
non-volatile memory on the CPU board. This will cause the system, upon
initialization, to install a default table directory and initialize several
system parameters.

IRM Installation and Configuration p. 2
Use the 162bug command go 120000 to start the system code.

[At this point, the code runs for the first time. It aborts, because it cannot
successfully return to 162bug following table directory initialization.
Running the code a second time should succeed. The IPARP table will be
initialized, as well as the TRING table, used by networking software. The
low two bytes of the ethernet address should also appear at 405046 as the
local station node#. The niot parameters are used to initialize the IPARP

table at 40E010 with the station’s IP address, subnet mask, gateway IP
address, and MTU values. For example,

83E1 7BD6 FFFF 0000 IP addr 131.225.123.214, mask
83E1 7EC8 05DC 05DC gateway IP addr, MTU’s]

Install the 09xx value, for example 09BF, as the UDP node# at 40507E. [The
default value of 0964 will already be there, allowing immediate access by a
node that can be configured to target the new IP address via node# 0964.
This allows ordinary UDP-based Classic protocol to be used via ethernet to
access the new node. The sender needs to have the appropriate IP address
installed in the corresponding entry of the IP Address Table used by Acnet.
But the receiver needs only know its own UDP node#.] Reset the system to
let all this work.

Install the Acnet IP address table, which gives the IP addresses for the
09xx nodes. Copy from another station that has this table at 40FA00. (In a
133-based system, it is at 10FA00.) [The pointer to the 512-byte physical
node address table used by Acnet should already be installed as address
40F800 at TRING+$78, or 405078.]

[A number of application program names should already be installed in the
PAGEP table, as follows:

PAGEMDMP Memory Dump
PAGEPARM Parameter page
PAGEEDAD Edit Analog Descriptors
PAGEEDBD Edit Binary Descriptors
PAGELAPP Local appl params
PAGECRTI Remote page access
PAGEDNLD Download page
PAGEECHO Ping, Echo client
PAGENETF Network frames
PAGEMBLK pSOS-allocated memory blocks]

Copy any desired programs from another station, say 09BE, via the
download page.

IRM Installation and Configuration p. 3
For operation away from Fermilab, also copy the HELPLOOP code from node
096F. This is a text “file” that is used to produce the prompting text for
local application parameters accessed via page E.

[The data stream used for network diagnostics should already be installed
at 401C00. Currently, this looks like:

8001 0010 0008 1000 Queue size is $1000.
0010 9000 0000 0000 Queue starts at 109000.
4E45 5446 5241 4D45 NETFRAME

Page F is used to display these diagnostics.]

[The default BADDR table should already be installed at 40A000. This
provides some dummy non-volatile byte addresses in the 40FFxx area that
can used for various system enable bits.]

[A minimum data access table should already be installed at 401000, such
as:

7F00 0001 0000 0000 Repeat the following at 15 Hz
0000 0000 0000 0000

0405 0000 0040 A000 Update binary status data.
0000 0000 0000 0080 (BADDR at 40A000.)

1D00 0000 0000 0000 Run all enabled local appl’s.
0000 0000 0000 0000]

Use 162bug command env to set network auto-boot parameters so the
TFTP transfer can occur automatically at reset time, or perhaps only at
power-on reset.

Load and enable local applications LOOPECHO, LOOPTFTP, LOOPAAUX. Use page
E to do this, specifying the appropriate parameter values and labeling
enable bits via page B.

LOOPECHO (supports UDP Echo testing)
Enable Bit# 00A9 UDP ECHO ENABLE

LOOPTFTP (TFTP server)
Enable Bit# 00B9 TFTP ENABLE

LOOPAAUX (needed at Fermilab only for Acnet)
Enable Bit# 00AE ACNAUX ENABLE

PNA node# 0921 (Gets PNA table from CNS33.)

IRM Installation and Configuration p. 4
162bug. Then enter the following command:

PFLASH 120000:20000 FF880000

To recover code later from Flash memory for execution, enter this
command:

BM FF880000:10000 120000

To change the IP address configuration, several changes must be made.
Note that if these changes are to be made from 162bug, all 004xxxxx
addresses must be changed to FFExxxxx. This is because the non-volatile
memory is mapped to the latter address upon reset to 162bug. When the
system code initializes, this mapping is changed to 004xxxxx.

Change the IP address, subnet mask, gateway address via the niot
command. Then change the corresponding parameters in memory at
0040E010.

Normally, we turn on the Network Boot option via the 162bug env
command. When the system is powered up, it uses the TFTP protocol to
copy the system code from the given Server IP Address. After the transfer
is complete, it automatically begins execution of that code at 120000. To
turn off this option, one must issue a Break when 162bug is starting up.
Then one can use env to turn it off. For systems installed outside of
Fermilab, booting can go faster if the Server is a local node, although TFTP

can work successfully across the Internet. To perform the transfer
manually, say, to get a copy of the latest system code, use the nbh
command.

One can maintain a local copy of the system code on a workstation disk.
Use the workstation’s TFTP client command to do this (in binary mode)
from a running IRM system. The system code will be copied onto a disk file.
Then use the niot command to change the Boot File Name to access the
workstation’s disk.

IRM Software Overview
Robert Goodwin

Wed, Nov 16, 1994

Introduction
Internet Rack Monitor software is an evolution of that used in several front

end control systems at Fermilab and elsewhere. This latest version runs on the
MVME162-22 cpu board with MC68040 cpu, 4MB dynamic ram, 0.5MB static
ram, 1MB flash memory, ethernet interface, and support for up to four
IndustryPack daughter boards. The latter allows connection to I/O signals via
ribbon cables to digital and analog interface boards mounted inside the IRM
chassis. The ethernet interface allows network connection and supports widely-
used Internet protocols that allow data request and setting access as well as
alarm reporting, all based upon the UDP (User Datagram Protocol) transport
layer.

Local database
The nonvolatile memory houses a number of configuration tables that

characterize each station’s installation. Included in these tables is a local
database for analog channels and digital bits. It includes text and scale factors
used by local control applications for scaling as well as alarms reporting. It also
houses down loaded code for local and page applications in a memory-resident
file system. Local applications are used for closed loop support and for system
extensions such as TFTP protocol server support. Page applications support a
virtual console access to the system for local control, configuration and
diagnostics use. The system code is acquired from a server station by the prom-
based 162bug via the TFTP protocol at boot time.

Cyclic data pool activities
IRM software is a collection of tasks that use the pSOS operating system

kernel. The primary activities of the system are synchronized by an external
timing signal, which may be an external trigger input, or it may be decoded from
a “Tevatron clock” signal. (In the absence of a synchronizing signal at 10Hz or
15Hz, the system operates asynchronously at 12.5Hz.) At the beginning of each
cycle, the data pool is refreshed according to instructions in the nonvolatile Data
Access Table that are interpreted at the start of each cycle. Also, all active local
applications are run to operate on the fresh data for closed loop jobs or more
complex data pool updates. (A local application is compiled and downloaded
separately from the system code itself.) After the data pool is refreshed, all
active data requests having replies that are due on the present cycle are fulfilled
and delivered to network requesters. Alarm scanning is performed on all analog
channels and binary status bits that are enabled for such monitoring. Finally, the
currently active page application is run. So, the data pool is accessed by local
application activities, replies to data requests, alarm scanning, and the current
page application.

Synchronization
The Tevatron clock signal can carry up to 256 events. The IndustryPack

digital board decodes each event and interrupts the cpu, allowing time-stamping
of each event. Status bits derived from this event activity are part of the data
pool and can be used to synchronize data pool updating and local application

IRM Software Overview p. 2
data requests for up-to-1000Hz data available from the IndustryPack analog
board; i.e., one can plot 300Hz data, say, with time stamps measured from a
selected clock event.

Data request protocols
Due to the evolution of this front end system, three different data request

protocols are supported. The original request protocol is called Classic; it is used
by stations that communicate among themselves as well as by the Macintosh-
based parameter page application developed by Bob Peters. A second protocol
was designed by the Fermilab D0 detector people to fulfill their specific needs.
The third is that used by the Acnet control system at Fermilab.

Data server logic is included for both Classic and Acnet request protocols.
This allows one station (the server) to be targeted by a requesting host with a
request for data from other stations, in which the server station forwards the
request via multicasting to the other stations and compiles their individual
responses into the single reply it delivers to the requesting host. The purpose of
this logic is to reduce the number of replies a host might have to endure, in
response to a request for data from many different stations. The server station
can do this efficiently because of the built-in logic in each station that combines
multiple replies—due on the same cycle to the same destination—into a single
network datagram. For example, suppose three hosts make requests for data
from the same 10 stations at 10Hz, and each host uses the same server node. The
server node will receive 10 composite replies each 10Hz cycle, and it will send 3
replies to the three hosts, for a total of 130 frames/second, thus requiring each
host to receive only 10 frames/sec. Without the server station, each host would
have to receive 100 frames/sec.

Alarm handling
Alarm scanning is performed on all selected analog channels and digital

bits each operating cycle, as mentioned above. When a change in alarm state
(good-bad or bad-good) is detected, an alarm message is queued to the network
to share this news with the outside world. Such alarm messages can be multicast,
so that multiple interested hosts can learn of them. A local application can also
sample such alarm messages and reformat them to target a designated host
alarm server, as is required in the Acnet system. As a local diagnostic, such alarm
messages can be encoded for display or printout via the station’s serial port,
including both locally-generated ones as well as those received by that station
listening to the alarm multicast address.

Diagnostics
Several diagnostic features are included in the IRM design. The digital

IndustryPack board provides test signals that are driven by interrupt and task
activities. The interrupt signals are also displayed on 8 LEDs. These signals can
be connected to a logic analyzer to capture timing and related program activities
of the station’s operation.

A suite of page applications is available to perform various diagnostic
displays via the virtual console support.

1: Display areas of memory from any station(s), with 10Hz updating. Clear

IRM Software Overview p. 3
blocks of memory, or copy them from one station to another.

2: Display Tevatron clock events with 10Hz updating. Capture and display
network frame activity, providing a kind of built-in “poor man’s sniffer”, in
which the timing of frame reception or transmission processing is shown to 1
ms resolution within the time-of-day-specified operating cycle.

3: A network client page allows exercising the standard IP ping and UDP
echo tests, as well as Network Time Protocol and Domain Name Service
queries.

4: A list of kernel-allocated blocks of dynamic memory in the local station
can be displayed and updated continuously.

5: All three data request protocols can be exercised in a test mode to verify
particular cases and measure response times.

6: A station survey page allows listing several characteristics of a list of
stations, including system code version, amount of free dynamic memory,
time since last reset, number of allocated channels and bits, number of active
data requests, and operating cycle time.

7: A log of recent settings performed in a given station can be displayed in
a similar fashion to that of recent network frame activity.

Software development
Program preparation is done on a Macintosh using the MPW (Macintosh

Programmer’s Workshop) development system. The system code and application
codes are both developed under MPW. The system code provides a core level of
support that can be enhanced by the addition of local applications (LAs) to
support the specific needs of a given installation. Such LAs may be written by a
user in C or Pascal and, using the MPW tools, compiled and linked with the help
of a small library of glue routines that invoke system code services. The resulting
linker output is downloaded to any local station using the TFTP client also
running as an MPW tool. The code received by the station’s TFTP server is copied
into the non-volatile memory resident file system. Using a page application for
the purpose, a set of parameters are specified to be passed to the LA upon each
invocation. These parameters are constant data that are often Channel#s or
Bit#s, whose present readings determine the course of action of the LA. The first
parameter is always an enable Bit# for the LA. When the enable bit is set, the
system finds the code for the LA in the resident file system and copies it into
allocated dynamic memory for subsequent execution. Every operating cycle,
during Data Access Table processing, each enabled LA is called with the set of
specified parameters. It can perform any short-term activity it needs to
according to its context. The first time it is called, it allocates memory to
maintain its own execution context. A pointer to this context memory is also
passed to the LA each time it is called. An LA that is written to be a network
server can also be invoked upon reception of a network message intended for it.
If the enable bit is turned off, thus disabling the LA, a final call is made to the LA
to allow it to release any resources. An LA can be edited, compiled, linked and
downloaded to a target station without requiring a reset of the station. In the
case that such an LA is already enabled and active at the time of downloading,
the switch to the new version is automatic. Minor program changes can thus be
accomplished in seconds.

Diagnostic timing of tasks, interrupts
Thu, Apr 7, 1994

On the Internet Rack Monitor is a 26-pin connector of test points that permit monitoring of
system software timing. Some of the signals measure the time taken by various tasks, while
others measure the time taken by interrupt routines. Here is a layout of the test points connector
signals as viewed from the front of the IRM. Tasks are in plain text style, while interrupt routines
are in italics.

(put picture here)

15. A/D scan interrupt. 1Khz from each analog IP board.
14. Clock Events interrupt from digital IP board.
13. SNAP task. Handles Internet Protocols IP,ARP,ICMP,IGMP,UDP.
12. RETDAT task. Handles Acnet data request/settings protocol.
11. D0 task. Handles D0 data request/settings protocol.
10. Acnet task. Supports Acnet header-based communications.
9. Serial task. Handler for RS-232 serial input.
8. Server task. Delivers replies to Classic protocol server requests.
7. QMonitor task. Provides cleanup/timeout support for system activities.
6. Update task. Updates data pool, runs local appl’s and fulfills active requests.
5. Date/time task. Provides time-of-day support.
4. Small memory dump task. Displays 8-bytes of memory on last line of CRT.
3. Application task. Manages activity of current page application.
2. Console task. Supports local console I/O, real or emulated.
1. Alarms task. Scans for and reports analog, binary and comment alarms.
0. Classic task. Handles Classic data request/settings protocol.

7. 1553 interrupt for end-of-command from 1553 chip used in D0.
6. 15 Hz interrupt. Handler for 15 Hz cycle interrupt from external timer.
5. Arcnet interrupt from Arcnet chip used in SRMs.
4. 14469 interrupt. Local console interrupts from crate utility board.
3. Network interrupt from token ring or ethernet controller.
2. Motor interrupt. Motor step interrupt support at 150 Hz.
1. Serial interrupt from SCC serial interface chip.
0. Tick interrupt providing 100 Hz timing reference to kernel.

ROM Boot Configuration
Auto-start for 162-board systems

Wed, Apr 6, 1994

This note describes how to prepare a version of the local station/IRM

system code for automatic boot using the ROM Boot option supported by
162Bug.

For most 162-board-based systems, such as IRMs, the normal start-up
practice is to use the Network Boot option under 162Bug. After reset, or
optionally after power-on reset only, when 162Bug takes control, it can be
set up via the env parameters to automatically download over the
network from a server node using the TFTP protocol. A server node can be
any local station/IRM, or it can be a workstation or other host. When it is a
local station/IRM, the file name that should be used in that file transfer
protocol is system. The TFTP local application, which provides such server
support, recognizes this file name as a reference for 128K of memory at
00120000, where the system code is located before it is transferred to
000E0000 for execution. When the server node is another host, the file name
should be as is appropriate for that host to indicate the executable image
file to be transferred.

For a server node, however, it is desirable that it come up by itself without
having to use TFTP, as it is the source for other stations. The 162Bug
program includes support for a ROM Boot option, which means that local
memory will be searched for a valid program to execute, and control will
be passed to it. A valid program must conform to certain rules. A 16-byte
header precedes the code, and a checksum word is at the end. This is
explained in detail in Chapter 1 of the manual “Debugging Package for
Motorola 68K CISC CPUs User’s Manual.”

These steps can be used to prepare for automatic execution via ROM Boot:
1. In an unused area of DRAM, say 00200000, prepare a header as

follows:
00200000 424F 4F54 0000 0010 Ascii ‘BOOT’, offset to code start

00200008 0002 0000 5359 5354 Length of code, name of code SYST
2. Copy the system code into the memory just after this header, at

00200010.
3. Enter 162Bug and use the cs command to compute the checksum

word.
cs 200000:FFFF

4. Using mm, install the checksum word at the end of the code, at
0021FFFE.

5. Program the Flash memory with the result, as follows:

and the “ROM Boot Direct Starting Address” FF880000 is entered.

The above procedure allows a server node to come up automatically after
power-on.

 Arcnet Gateway
Transport across multiple networks

Feb 26, 1991

The Arcnet network is used to interface the SRM’s to a VME Local Station.
The Local Stations are networked via token ring. A means of communicating
from a token ring node to any Arcnet node can be provided if the local
stations provide a gateway service. This note describes a way to achieve
gateway for the local stations.

Communication protocols used between the local station and an SRM are
based upon use of the Acnet header, a task-to-task communication protocol
developed at Fermilab for accelerator control systems. The implementation of
the Network Layer in the local station systems uses this header to support
task-to-task communications between two nodes on a single network. The
essence of this scheme is to use multiple Acnet headers to describe the
individual “hops” in communications between two tasks on nodes that span
more than a single network. The Acnet header provides a wrapper or
envelope to provide for delivery across one hop in the communications path.

As an illustration, take the simple case of a local station (LS1) which wants to
display some memory that is located on an Arcnet node (A3) which is
attached to another local station (LS2) which is considered to be node A0 on
the Arcnet network. For this case, two Acnet headers are sufficient. The Acnet
header format is as follows:

msgType

status

destNode

srcNode

destination
task

name

srcTaskId

msgId

msgLng

LS1 sends a data request message, using the simple protocol used by SRM’s,
preceded by two Acnet headers. The first (outer) one is the one which specifies
the request message type, the destination node LS2, the source node LS1, the
destination task name GATE, the source task id of the original requesting task,

Arcnet Gateway Feb 26, 1991 page 2
message itself. The second (inner) header, which is treated as part of the
message contents for the first hop, specifies the same request message type,
the destination node A3, the source node A0, the destination task name SRMD,
the source task id of the GATE task, the message id assigned by the GATE task,
and the message length which is 18 less bytes than the first message length.

For the return path, the reply message from the SRM that includes the
memory data that was requested carries a near-copy of the second header
described above, with the message type changed to a reply and the status word
filled in. The GATE task receives the message because of the source task id. It
uses the message id that it assigned with the request message to look up its
copy of the first header and precedes that header with the reply message
(including its Acnet header) that it just received. It then transmits it according
to the source node of the original requester. The original requester receives
the entire message including the two Acnet headers. Stripping away the two
headers, the requested memory data remains. The status word may be
returned copied into the first header (by the GATE task).

This scheme can be easily extended for more hops. The gateway logic becomes
no more complicated, as it only handles getting the message across one hop.
All of the intermediate destination tasks would presumably be gateway tasks.
The user (original requester) must know the whole picture in detail. So, the
scheme trades complexity of system software support for the detailed
knowledge of the entire transaction that must be known by the user.

For routine maintenance needs of providing access by token ring nodes to
data structures in SRM memory, the scheme should be more than adequate.
The extendibility of the scheme may help with unknown future needs.

 Arcnet Support
Implementation for Local Station

Jun 10, 1991

Introduction
Arcnet is supported by the local station system software to permit access to

Smart Rack Monitors (SRMs) which are used in the new Linac controls. As an
arcnet node, an SRM interfaces to 64 A/D channels, 16 D/A channels, 8 bytes of
binary I/O, and additional I/O depending upon the installation of daughter
boards. Onboard an SRM is a 68332 processor, which is used both for data
collection and arcnet communication.

The general plan for networking to SRMs is to use Acnet-header-based network
messages, which support generic task-task communication over a network. A
local station connects to a few (1–8) SRM arcnet nodes. Every 15 Hz cycle, the
local station requests all data from each SRM to be collected and returned in a
single frame. (In this way, the SRM does not need a 15 Hz interrupt signal to
announce the start of a new cycle.) The returned data is mapped into local station
analog channel readings and binary status byte readings. Use of a broadcast
request permits multiple SRMs to simultaneously prepare their data for arcnet
transmission. Each SRM returns a single frame of data containing readings of all
types. The token-passing arcnet network hardware arbitrates frame delivery.

SRM-based data acquisition is designed to collect data more efficiently than the
previous scheme (used heavily in the D0 system) of using 1553-based Rack
Monitors. The overhead of processing a single arcnet frame replaces the
overhead involved with processing the many 1553 commands to collect data
from the analog and binary hardware interfaces in the D0 Rack Monitors. The
inclusion of a processor onboard the SRM allows consideration of implementing
certain special handling such as closed loop logic in the SRM rather than in the
local station.

Network Layer
As used in the local station, the Network Layer refers to support of Acnet-

header-based network messages. Providing task-task communication across a
network, it provides a higher level interface for applications that run in the local
station. A lower level protocol may have been sufficient for use with SRMs, but
the Network Layer permits arcnet communication to take advantage of more
software that already exists.

Transmission
The current network routines do not include an argument to specify which

network is being used, so the use of Arcnet communications is based upon a
certain range of destination node#s. Arcnet node#s are of the form $7Axx. For
reasons having to do with setting support for the SRMs, the range of xx is

Arcnet Support Jun 10, 1991 page 2

A message to be sent to a network is placed into an allocated message block, and
the routine OUTPQX is called to queue the message to the network. It places the
message block pointer into a network output queue. With token ring, this is the
OUTPQ system table. With Arcnet, it is a new table statically allocated in on-board
ram. (A network output queue need not be in non-volatile memory.) The OUTPQX
routine checks the destination node# to determine which queue to use.

When it is time to flush queued messages to the network hardware, the routine
NetXmit is called. It now accepts a parameter that indicates which network
output queue is to be flushed. (The Network Layer routine NetSend calls
NetXmit once for each network.) It concatenates consecutive messages destined
for the same node into frames according to the maximum frame size for that
network. Most of the NetXmit logic is independent of the network, but a few
local variables are set that depend upon the network being used. They are the
network# (0 or 1), network board address, network output pointer queue, TPL
header, and the maximum frame size. The TPL header is used to emulate the
token ring Transmit Parameter List chain that contains references to the spooled
frames to be processed by the network hardware. Transmit interrupt processing
sequences to the next frame waiting in the TPL chain.

At the end of the NetXmit routine, when a frame is ready to be sent to the
hardware a special routine is called that depends on the network being used.
This routine ensures that the frame just placed into the TPL chain will be
ultimately sent out by the hardware. If the network is not already busy, it forces a
transmit interrupt to get it started. If it is busy, the transmit interrupt that results
from completion of the current frame will do the job as it follows the TPL chain.

Data structures for arcnet
Several data structures are significant for arcnet communications. The ARCPQ

is the arcnet output pointer queue for messages described above. The ARCXMTB is
the circular buffer used to hold prepared arcnet frames which are referenced by
entries in the ARCTPLH transmit parameter list chain. The ARCRCVB is a circular
buffer into which received frames are copied from the hardware buffers. The
SRMTABL is used for communications with SRMs specifically, especially for data
acquisition. A set of arcnet variables is maintained in the TRING system table,
which holds some common data structures with token ring. Note that a special
word at TRING+$32 must be set to ‘AR’ to enable a local station’s use of arcnet at
all; without that key, the system will not even look for the arcnet hardware board, the
CC121 VME module made by CompControl.

Data acquisition
Arcnet data acquisition from SRMs is directed by entries placed in the data

Arcnet Support Jun 10, 1991 page 3
received data into local station analog channel and binary byte readings.

Since all data acquisition is processed while the Update Task is active, in order to
preserve correlated data, a special check is made by the arcnet receive interrupt
routine for data acquisition replies to direct them to the appropriate message
queue. (This is normally done by the ANET Task, which handles acnet-header-
based frames and routes each message to the appropriate message queue, but the
ANET Task cannot run until the Update Task has finished. Since data acquisition
from SRMs is the only reason for supporting arcnet, it was decided that this
special case handling was justified.) Data acquisition replies are detected based
upon the source task id (in the acnet header) that identifies the network
connection used by the Update Task for making such requests.

SRM support
Details of the support for SRM data requests and settings, including the

formats for the data access table entries and device setting parameter
specifications, are found in the document called “SRM Message Protocols.”

 Simple Protocol for SRMs
Protocol #4
Sep 26, 1990

For VME Local Station communications with the SRM arcnet nodes, a choice of
protocol must be made. One can use an existing protocol already known to the
Local Station, or one can invent a new one designed for the purpose. This
option—called “#4” in our informal discussions due to the existence of support
already for the Classic, D0 and Accelerator protocols—should be simple, or it
would not be worth the effort. An idea for a suitable protocol is explored in this
note.

As an aid to get started, assume we use the Acnet header as a basis for a simple
protocol design. It is well-known around the accelerator division and provides
for expandable and generic task-to-task communications. It allows both one-shot
and repetitive replies to generic requests. For reference, its layout is repeated
here:

src
lan

dst
lan

src
node

dst
node

flags msgType

status

srcTId

msgId

msgLng

dst
task
name

The msgType can be a Request, a Reply, or a USM (unsolicited message). The
Request demands a reply. The USM demands no reply. The destination task
name for a request or USM allows designing a large number of non-interfering
protocols, since only the tasks involved in the communication must understand
the protocol used in the rest of the message beyond the header. The source taskId
provides for routing the reply back to the requester. Multiple requests between
tasks are distinguished by the msgId. The msgLng gives the entire message
length including the Acnet header (18 bytes) itself. A flag bit in the msgType byte
indicates whether a request expects a single reply or multiple replies. Network
Layer software supports the use of the Acnet header to provide the task-to-task
communications. A task connects to the network to announce its support for
handling requests destined for a given destination task name and provides a
message queue that enables it to receive such requests and any replies to its own

Simple Protocol for SRMs Sep 26, 1990 page 2
operating system kernel.)

Additional items needed in a simple message protocol for data requests and
settings are a message type (beyond the generic msgType mentioned above), a
device index and either the #bytes of data requested or the setting data.

Consider the following layout for a data request and reply:

2x type

index

#bytes req'd

0x type

status

reply data

The value of “x” is the length of the index value. This would be 2 for channel or
bit numbers and 4 for memory addresses. The type byte can denote analog data,
binary status or memory data. The reply can include the same value used in the
request.

Consider the following formats for a setting and its acknowledgment:

3x type

index

#bytes data

1x type

status

setting data

Again the “x” nibble gives the size of the index value. The #bytes of setting data
is included in order to allow grouped settings. Without this consideration, it can
be inferred from the msgLng word in the header.

Whether support for this simple protocol is worth the effort is yet to be decided.

 SRM/Arcnet Variables Prose
What do they all mean?

Jun 10, 1991

There are diagnostic and operational variables which are part of the local station
support of Arcnet and the Smart Rack Monitors (SRMs). The meaning of these
variables is described herein. The layout of the variables whose names are used
here is shown in the documents “Arcnet Variables” and “SRM Variables.” While
a full understanding of these variables requires studying the source code, this
note provides a concise summary for diagnostic reference.

Arcnet Variables
The variables for general arcnet driver support are stored in a section of the

TRING (token ring) table. Besides the following, the use of arcnet at all by the
local station must be enabled by setting the word at TRING+$32 to ‘AR’. The
source code that uses these variables is the ARCINT module.

ArcAddr—the base address of the COM9026 chip that supports arcnet.
D1—Should always be the value $D1, indicating that the arcnet chip successfully

reset before the local station system initialized its arcnet logic.
SId—The one-byte local station arcnet node#. Set along with the D1 byte.
bBusy—Bit pattern indicating which hardware receive buffers are full. Not used.
porCt—Count of power-on resets of the arcnet chip. Normally zero.

stat—The last arcnet status byte reading captured at time of arcnet interrupt.
lastDid—The last destination arcnet node# byte used for transmission.
reconfCt—Diagnostic count of arnet network reconfigures that result from an

arcnet node being added or removed from the network.
waitMax—Maximum time to wait after an arcnet transmission before timing out.

Initialized to 32 (units of 0.5 msec).

lngErrCt—Count of invalid length errors (odd or <4) in received arcnet frames.
idErrCt—Count of errors in destination id of received arcnet frame
auxErr—Auxiliary error status

Invalid destination node# in received frame
Bad length when invalid length (odd or <4) error

rBufOff—Offset to receive hardware buffer (toggles between 0 and $200)
rFrameCt—Longword count of frames received

xBufOff—Offset to transmit hardware buffer (always $400)
xFrameCt—Longword count of frames transmitted

timOut—#times no transmit interrupt within waitMax timeout value
noTokn—#times cannot recover TA after disabling transmitter after timeout.

SRM/Arcnet Variables Prose Jun 10,1991 page 2
idFail—node# which did not acknowledge.

thisTPL—ptr to TPL entry whose frame last enabled for transmit
xBFull—Bit pattern for busy hardware transmit buffers
xDsbl—Transmitter is disabled hoping to get TA interrupt.
iMask—Current value of the interrupt mask register (write-only)

noTACt—#times transmitter not busy but TA=0.
lastXCycl—Cycle counter when last frame transmitted.
lastXMS—Relative 0.5 msec count within cycle when last frame transmitted.

FwdPtr—Points to itself. Emulation of token ring receive parameter list.
CStat—Emulation of token ring receive CStat word
fSize—Emulation of token ring frame size received

count— Emulation of token ring maximum space available in receive buffer
buffer—Ptr to current buffer area for next received frame

rBufPtr—Ptr to base of arcnet circular receive buffer area
lngErr—Count of invalid length errors (too small) in received frame.
acfcErr—Count of AC/FC errors in emulated token ring header.

badSap—Invalid SAP# not found in SAP table
uIzSap—Uninitialized SAP value (no queue id) in SAP table
auxErr—Auxiliary error status

Send_X return error status when sending data acquisition message
SAP value not in SAP table
SAP value w/o queue Id in SAP table
Invalid ACFC word (emulating token ring)
Bad length when invalid length error

sapQErr—Count of errors returned from Send_X

cStatErr—Last received cStat word in error
rErrCt—Count of bad received cStat words.

SRM Variables
These variables are used for SRM communication using data access table

entries and setting parameters. The source code that maintains these variables is
found in the SRMREQ module.

SRMD tid—The taskId returned from NetCnct for SRMD used by data acq.
SRMS tid—The taskId returned from NetCnct for SRMS used by settings.
SRM ‘up’ status—longword of status bits for each SRM returning data acq.

SRM/Arcnet Variables Prose Jun 10,1991 page 3
SRMQueue stat—Status return from SRMQueue for data acquisition.

SRMS queue id—SRMS message queue id used to call NetCnct.
NetCheck stat—Status return from NetCheck call.
SRMQueue stat—Status return from SRMQueue for settings.

Setting message buffer—Buffer used for last setting “#4” header to an SRM.
Setting data—First 10 bytes of last setting data sent to SRM via SRMSet.

Request message buffer—Last request message sent by data acquisition.

SRMD queue id—SRMD message queue id used to call NetCnct.
Cycle counter—Local station cycle counter of last SRM data acq request.

mRsvd—pSOS message queue buffer (6 longwords)
mHome—(pSOS special case. not used)
mSize—(size of message received)
msgCntOff—(Offset to frame message count word)
srcOff—(Offset to frame source address)
destOff—(Offset to frame destination address)
message ptr—(Ptr to message in frame buffer, base of offsets above.)

msgPtr—Ptr to message in frame buffer received from SRM A1.
msgSize—Size of message received from SRM A1.
msgTime—Relative time in cycle of last message received from SRM A1.
msgStat—Status word from acnet header of last message received from SRM A1.
nRecvCyc—#messages received this cycle from SRM A1.
nRevTot—Total #messages (longword) received from SRM A1.
—above 6 variables repeated for each SRM A2–BF.

 SRM Message Protocols
From Local Station over Arcnet

Jul 23, 1991

The new Linac control system local stations support an Arcnet interface to Smart
Rack Monitors (SRMs). Each station connects to several SRMs using a private
Arcnet network. The SRM acts as a data concentrator to make data access to the
hardware more uniform. In the future it may support closed loop algorithms. To
the local station, an SRM is treated partly as a data interface and partly as a
network node. The simple message protocol is based upon the Acnet header used
for task-task commun ications in Fermilab accelerator systems.

Data interface
As a data interface, three types of entries in the Data Access Table (DAT) of

the local station reference the SRM for collecting readings and settings. The
advantage that the SRM provides is that a single network frame can deliver all
the SRM data in response to a data acquisition request, thereby making access to
the data more efficient. The following describes some details of this connection.

Every 15 Hz cycle, the DAT is interpreted by the local station. This first type of
DAT entry for SRM data acquisition is used to send a request message to the
SRMD destination task in the SRM. The entry format is as follows:

—$ 2 0

#bytes req'd

—

reqTypeSRM node#

index (long)word

—

A one-shot data cycle request message is queued to be sent to an Arcnet node or
broadcast to all Arcnet nodes. NetXmit is called to flush the network queue after
this entry. Beyond the Acnet header the format of the message is:

2x type

index

#bytes req'd

For this case, x is 2, indicating one index word value present. The maximum
number of bytes requested is 490 bytes. The type byte indicates the usual 15 Hz
data collection. The index word is not used in this case. In response to this
message, the SRMD task collects all its data using its own version of a data access
table, builds a frame buffer with its response data, and returns the response
frame to the local station. Type byte values defined for SRM data requests are:

Type Function

SRM Message Protocols Jul 23, 1991 page 2
02 Memory dump (index = 4-byte address)
03 Table access (index = table#)

The data response message from the SRM has the following format:

lengthtype

reply
data

lengthtype

reply
data

first group

second group

Several groups of variable lengths follow the acnet header. Each group
represents data of a different type. The group types,which are SRM table#s, are
listed below. The length byte is the number of words in the group, including the
type/length word. Error status is given by the acnet header status word. The
reply message remains in the circular receive buffer until needed by post-
processing logic that maps these sections of data into local station analog
channels and binary data bytes.

SRM table# Data referenced #entries
01 Linac mpx A/D via daughter-board I/O 16*n words
02 Linac mpx D/A via daughter-board I/O 16*n words
03 spare —
04 A/D on SRM board 64 words
05 D/A on SRM board 16 words
06 Digital I/O on SRM board 8 bytes
07 Mpx digital input via daughter-board 16 bytes
08 Digital I/O on a daughter board 4 bytes
09 Actel timer board 8 words
0A Opto-22 digital I/O bytes 2–3 bytes
0B Digital I/O board #1 9 bytes
0C Digital I/O board #2 9 bytes

Returning to the DAT entries in the local station, when no more work can be
done until the SRM response data has been collected, a second type of entry in the
data access table is used to wait for the SRM data response.

—$ 2 1 ———

SRM Message Protocols Jul 23, 1991 page 3

This is done by waiting on the message queue containing the reference to that
response message. When the message from the given SRM is received, or if a
deadline time (in 0.5 msec units from the start of the current 15 Hz cycle) is
exceeded, processing of the DAT continues. If messages are received from other
SRMs besides the one specified in this entry, a record of it is kept so that the
succeeding wait type entry that refers to it is immediately satisfied. To insure that
old messages are not left over from the previous cycle, the message queue is
emptied prior to send the SRM data request message.

A third type of DAT entry is used to map the response data into analog channels
and binary bytes of local station data.

entry#$ 2 2 —tbl#

offsetentry offset #entriesSRM
table#

—

SRM node#

The entry# identifies a target analog channel, for example. (In the usual case, the
tbl# would be 0, indicating the ADATA table. One can target the setting word of an
analog channel, rather than the usual reading word, by using a value of 2 for the
entry offset.) Also specified is an SRM node# and an SRM table#, given in the
table above. A search is made through the structure in the cycle response
message for a match on this group type, and data words are copied into
successive entries in the ADATA table. If the #entries is not equal to the amount of
data included of the given type, then only the smaller amount of data is copied.
This allows modifications to the SRM’s data access table without simultaneously
having to change the local station DAT. For the case of digital byte data, the
#entries refers to a #bytes; otherwise, it is a #words. Many such DAT entries may
be required to map the different groups of data included in the cycle data
response frame into the local station’s data pool. It is assumed there is only one
occurrence of a given SRM table# in the received message.

If an SRM does not respond to the cycle data request by the given deadline, the
target channel or byte readings are written as zeros, in order to avoid reporting
stale data readings. Also, settings are not accepted for such an SRM. A longword
of status bits is maintained that can be assigned as digital data bytes and
included in the alarm scan to provide alarms about SRMs which are down.

Examples of DAT entries for SRM data acquisition
Request cycle data from all SRMs:

2000 0000 0000 0000

7A00 2201 01F0 0000

SRM Message Protocols Jul 23, 1991 page 4

Map 64 channels of SRM A/D into analog channels 0080–00BF:

2200 0080 0000 0000

7AA2 0000 0400 0040

Map 16 channels of SRM D/A into settings of channels 0080–008F:

2200 0080 0000 0000

7AA2 0002 0500 0010

Map 6 bytes of SRM digital data into binary bytes 000C–0011:

2205 000C 0000 0000

7AA2 0000 0600 0006

Network interface
To support Arcnet in the local station, which has extensive support for the

token ring network, a range of node numbers is used for Arcnet nodes. A node
number is a word, so there is plenty of addressing space available to do this. The
Arcnet range is $7Axx, where xx is the one-byte node# used by the Arcnet
interface. Support for motors, described later in the settings section of this
document, further restricts the range used for SRM Arcnet nodes to A1–BF,
which still permits up to 31 SRM nodes to be installed on Arcnet.

Messages to be sent to an SRM on Arcnet pass through a separate Output Pointer
Queue (OUTPQ) than that used for token ring transmissions. (This permits Arcnet
activity even during the time that a station is opening onto the token ring
network.) The NetXmit code combines messages into frames using the
appropriate transmit buffer. There is a separate transmit parameter list chain,
which is a queue of pointers to network frames ready to be transmitted on
Arcnet. When the frame is ready, a check is made for current Arcnet transmit
activity. If it is idle, then an Arcnet transmit interrupt is forced by enabling the
TA interrupt. (If it is busy, nothing is done, as the pending Arcnet transmit
interrupt will take care of it.) The interrupt routine does error checking on the
last frame transmitted, if any, and copies the next frame in the queue to the
hardware buffer. It then enables the buffer to hand it over to the Arcnet
hardware. In this way, many Arcnet frames can be queued awaiting
transmission.

When a frame is received from Arcnet, the interrupt routine copies the frame
from the hardware buffer into a circular receive frame buffer. This buffer is
separate from the one that receives token ring frames because the token ring
chipset has DMA control over its frame buffer. A second hardware buffer is re-
enabled to provide a place to receive the next frame. The software emulates the
token ring format in the circular buffer. It also checks the Acnet header of each
message within the frame and sends a pSOS message reference (consisting of

SRM Message Protocols Jul 23, 1991 page 5
header for replies. An optional event can also be sent to a task in case the task
waits on events instead of the message queue. When a task receives such a
reference message about an Arcnet message, it looks exactly the same as if it
came from the token ring network. All subsequent processing is unaffected.

To a user program, Arcnet nodes can be accessed in the same way as for token
ring. The only difference is that the protocol of the messages supported is
different. The SRMs do not support the Classic protocol, the D0 protocol or the
accelerator protocol. They only support their own Acnet-header-based protocol.

Settings
Settings are of several types, including memory, analog D/A or motors, and

binary bit or byte control. Each results in a short message sent over Arcnet to the
SRM. The message format (beyond the Acnet header) is:

3x type

index

#bytes data

setting data

The x indicates the size of the index field. It is 4 for the memory case since the
index field is a 32-bit address. It is 2 for the other cases. The type byte denotes a
control type# to the SRM using the following values:

Type# Hardware control Index word Data
05 Motor control table,entry/mType,bit #steps
06 Bit control table,entry/0,bit dcType/pulse
07 Byte control table/entry Data byte
08 D/A control table/entry Setting value
09 Memory write 32-bit memory address Memory data

(The index field syntax above uses “,” to separate nibbles and “/” to separate
bytes.) In the local station, the index parameter of the message originates in
various tables. First consider the analog control case. For a D/A or motor, the
analog control field of an analog channel descriptor is required to contain the
needed information to effect the setting.

entry#ACtype SRM# table#

For a D/A analog control field entry, the SRM# is the Arcnet node# byte. The
SRM table# and entry# make up the last two bytes.

SRM Message Protocols Jul 23, 1991 page 6

$ 0 2 SRM#

mtype

bit#

entry#table#

The table# and entry# (byte#) is limited to 4 bits each. The bit# (range 0–7) is the
bit# of the byte that contains the pair of control bits that drive the motor. The
mType specifies the type of motor interface as follows:

mType Motor interface bit# indicates:
1 cw, ccw pulse pair cw bit
2 pulse, direction pulse bit

For digital control, the BADDR table in the local station contains longword entries
for each byte of binary data. The entry is normally a pointer to the source of the
byte of data, except for special cases. For the case of an entry in the range
$80xxxxxx, the lower three bytes are a 24-bit pointer to a byte in a 1553
command block that accesses one word of digital data. For control, the
corresponding command block is found located 16 bytes from the reading
command block.

The range $81xxxxxx is used to indicate SRM digital data. The second byte is
the SRM node#, and the last two bytes are parameters of the digital interface.

entry# $ 8 1 SRM# table#

For this case, it is not necessary to contain a pointer to the data byte reading,
since the post-processing that is done with the third type of DAT entries above
takes care of updating these bytes that are stored in the BBYTE table of raw status
data. The processing for the $04 DAT entry skips to the next BADDR entry if it
finds an entry in the range $81xxxxxx.

For digital byte control, the index word in the message sent to the SRM is just the
second word above. For digital bit control, however, the message passed to the
SRM has a modified index word, in order to specify the bit# within the byte that
is to be controlled. The modified format is:

bit#0

entry#table#

The table# and entry# are squeezed into a nibble, and the bit# of the byte to be
controlled is placed in the low 3 bits.

SRM Message Protocols Jul 23, 1991 page 7
the hardware interfaces would have lost their settings.

The local station also re-sends settings for the same reason after a reset of the
local station system. For the SRM devices, this means that the local station values
are passed to the SRM via Arcnet. The local station values are expected to be
correct, since they are updated when a setting message is queued for the SRM
and also when the SRM returns setting values in the cycle data response
message. These saved values are returned in response to a host’s request for
setting data.

As an example, when a setting is received for an analog channel which is
attached to an SRM, the value is placed in a setting message that is queued for
Arcnet. If the queuing is successful, including a check on whether the SRM is
actively participating in the data cycle request activity, the setting word in the
ADATA table is updated. When the SRM executes the setting, and there are no
errors, then it updates its own setting value. If the SRM is unsuccessful in making
the setting, this value is not updated. In any case, the following cycle's data
response message contains the last value kept by the SRM. In the case that the
setting was unsuccessful, this value will replace the optimistic value stored by
the local station. In this way, the local station value is nearly always correct. By
having the local station store the optimistic value, one can maintain sensible
support for multiple user control of the same analog channel, immediate read-
back of the setting value, and multiple setting commands that reference different
bits in the same byte.

Analog Descriptor Add-ons
Remembering special tidbits

Tue, Feb 25, 1997

When it is necessary to keep special information in the local database that relates to
only a few channels, a means of storing it would be desirable. This note explores
possibilities for this.

Using the name table
The name table is designed to provide a quick way to search for info according

to a unique key. It has been used so far in name searching, for both 6-character
names used locally in the Classic protocol and for 16-character names used in the D0
detector control system. The scheme depends upon the use of unique keys. Multiple
types of keys may be used, because in each case a type code is specified along with
the name. The "name," or whatever unique key is used, must reside within a system
table of some kind. The data that is stored in the "name table" is only the entry
number of the system table that is referenced by the type code. For 6-character
names, for example, the data that is stored in the name table entry is the channel#,
along with a pointer to the name as it resides in a field of the analog descriptor table.

In this case, the "name" might be a channel#, as those are unique within a
system by definition. A system table would have to exist to hold the information that
is special for a few channels. The data word in the name table entry would be the
entry number of that new system table. The pointer would have to point to the
channel# that must be stored in that entry. So, given a channel#, one can quickly
come up with the corresponding entry# in the new system table, if there is one.

A new listype# could be defined, along with new read routines and set routines,
so that read/write access to the special information can be supported. Some means of
deleting the extra info, and thus opening up a spare slot in the new table, must also be
provided.

Reference from descriptor
The spare byte in the analog descriptor could be used to index into an up-to-

256-entry table that could contain the extra info. It is quick to find the special info,
given a channel#, but one is limited to 256 entries.

Increase size of descriptor
Although this is the easiest path, it requires more memory than may be

convenient to relinquish. The 162 boards have only 512K of non-volatile memory. For
1024 channels, we use 64K of this memory for the current descriptor size. With 192K
of downloaded program memory, only 256K remains. If the #channels is limited to
1024, then we could double the size of a descriptor entry with no trouble. Not having
the special D0 tables saves another 64K. Not expanding the ADATA and BDESC tables
saves another 32K. 64K is needed for myriad other non-volatile tables.

Analog Descriptor Add-ons p 2

In summary, limiting support to 1K channels and 1K bits, with 128
bytes/analog descriptor table entry, we have:

Download program area 192K
ADESC 128K
ADATA 16K
BDESC 16K
Miscellaneous 64K
spare 96K
Total 512K

One could double the size of an ADATA and/or BDESC entry and still have 64K
available.

For the case of 133-based systems, which are all those in Linac, the situation
is different, although there is 1024K of non-volatile memory available. With the
ADESC table set at 150000, and with 2K channels of 128 bytes each, we would extend
the ADESC table to 190000, where the binary tables begin.

New CINFO system table
Another implementation of channel-related extra information uses another

system table, #25. Each entry contains the channel# key. An entry could be variable
length and of different types. Here is a proposed layout:

infoSz infoTy infoChan infoData[1]

infoData[2] infoData[3]

Each entry is composed of a size byte, a type byte, a channel# word, and arbitrary
information. An entry's size must be a multiple of 8 bytes. The example above shows
an entry with a size of 16 bytes.

As an example of the use of such an auxiliary table, consider the need for information
about channels that have swift digitizer support in Booster IRMs. Up to 8 channels
can have such support, but which channels they are is arbitrary. The FTPMAN

support must, given a channel#, determine whether or not swift digitizer support
exists for that channel. The CINFO scheme can do this. A new library routine can
assist in searching this small table.

Function CINFOEntry(typ, chan: Integer): CINFOPtr;

In the case that there is no CINFO entry available for the given channel, NIL is
returned. Let the type parameter be 1 for swift digitizer information. When FTPMAN

gets a request for swift digitizer data for a given channel, this routine can answer the

Analog Descriptor Add-ons p 3

question of whether that channel is connected to a swift digitizer channel. For
example, the CINFO entry might have this form:

0 8 0 1 chan# ptr to Swift board + ch#0-7

The ptr to the swift digitizer board gives access to the registers for controlling the
digitizer. The low 3 bits can contain which of the 8 possible digitizer channels is used.
To find the memory occupied by the resulting digitized waveform, one must read a
register from the IPIC chip, whose address is fixed, on the 162 board. The register that
must be read depends upon which of the four IP board sockets is used. The base
addresses of the IP board sockets on the 162 cpu board are FFF58x00, where x
ranges from 0–3 for board sockets a, b, c, d. So the board socket index can be obtained
from the base address that is contained in the table, such as FFF5820y for board
socket 2, or b, with y in the range 0–7 to signify which digitizer channel is used.

In case an separate IP carrier board is used, and the IPIC chip is not used, more
information is needed to find the memory address of the waveform. To cover this case,
the size should be larger than 8 bytes. Here is a possible layout:

1 0 0 1 chan# ptr to Swift board + ch#0-7

ptr to swift memory spare ptr

Here is a routine that can return the ptr to a swift digitizer waveform memory:

Function SwiftMem(infoP: CINFOPtr): SwiftMPtr;

Given a pointer to the CINFO table entry that was returned by CINFOEntry,
SwiftMem uses the previous logic to find the base address for the given waveform's
memory. It checks for both the short and long cases. It returns NIL if an error.

One can also, in a similar way, design a scheme to help with quick digitizer support.

1553 Control for Co-processors
Keeping control of the interface

Feb 2, 1989

In the Loma Linda VME system, co-processor boards are used to provide
waveform generation to drive ramped power supplies. The interface to the
supplies is via 1553. Access to 1553 cannot be shared, as sending a new
command will cancel one which is in progress. One could make use of
semaphores to support resource ownership, but the ramp generation is
extremely real-time, with up to 4 power supplies driven simultaneously at a
rate of 720 Hz. There is very little time that the 1553 interface is not busy.

The ramp co-processor routinely plays out the ramp and reads back the data
from the 4 power supplies at 720 Hz. But digital control needs to be handled
somehow. We must be able to turn power supplies on or off, for example.
The request to do this will come from the main VME cpu either from its own
current application—especially the parameter page—or from a network
setting request. The hardware connections are there to allow the VME cpu to
talk to the 1553 controller, but it dare not in order to keep from affecting the
ramp adversely. We must get the co-processor to do it when it has a brief
period of time available to sandwich it in with its other I/O.

The natural way to let the co-processor know about a digital control request is
via a message queue in shared memory. By using a queue, several control
messages can be awaiting co-processor service. (At the 720 Hz rate, there may
not be need for a queue to hold a large number of messages.) There is a system
table which contains pointers to co-processor queues. One of these is a co-
processor command queue—a separate one for each co-processor.

We can send a message via a co-processor’s command queue requesting that a
1553 control action be taken. The co-processor monitors the command queue
when it has time available and processes requests it finds there. In the case of
the ramp co-processor, the 1553 control must be handled by its interrupt code,
which is used to drive the ramp I/O. So, the ramp task level processing may
need to use another queuing mechanism to pass such requests to the
interrupt code. Or, it may simply use a buffer for the purpose—a one element
queue, if you will.

Returning to the VME main cpu, how shall it know to send a message to the
co-processor to handle the 1553 control? (The case of supporting digital
control is not simple, as has been covered in a separate note called “Digital
Control Pulse Delays.”) This note describes how to handle this at a low
enough level so that the complexities of the higher levels remain unaffected.

Let the various device tables in the VME system be built as if the VME cpu

1553 Control for Co-proc Feb 2, 1989 page 2
transaction is about to be processed, let the code realize that the co-processor
must be sent a request message instead to do the 1553 I/O.

Whatever processing goes on from the point of a user pressing the keyboard
interrupt key to initiate an off command, for example, ultimately results in a
word of digital control data being sent to the 1553 interface. At that point, the
routine called OUTW1553 is invoked. The arguments passed to this routine are
a pointer to the command block in 1553 memory where the command word
is stored, the data word to be output, and a try count in case of errors. The
command block pointer is enough to identify the 1553 controller being
accessed. (Each 1553 VME board houses two controllers.) Normally, the job to
be done is to copy the data word into the command block and alert the 1553
interface chip to process the command. But, if this command block is one
which should be handled by a co-processor, then we build a short message
instead and send it to the command queue for the proper co-processor.

How shall we determine whether a given command block should be handled
by another cpu? One plan is to key on the address of the command block
itself. In the case of the ramp co-processors, each uses a 1553 controller whose
base address is $00Ex0000, where “x” is the co-processor number. (Each 1553
controller uses 64K of address space.) This scheme is straightforward if the
main cpu assumes knowledge of this formulation. One disadvantage it might
have is that the ownership of a given 1553 controller is not program
controlled. It depends upon the setting of the address switches on the 1553
board. (One could still get program control by changing the formulation
dynamically.)

Another way to detect whether the 1553 control should be passed on is by
examining the content of the command block itself. The hi byte of the first
word is used to specify an optional offset to a “diagnostics block” for making a
record of errors and usage counts. If the byte is zero, no diagnostics are
recorded; if it is positive, it is taken as an offset from the start of the command
block to an 8-byte area used for placing the diagnostics information. If the byte
were negative, it could signify that a co-processor is to do the control of the
1553 controller which houses the command block. Specifically, if the first byte
were in the range $C0–CF, it could mean that the corresponding co-processor
in the range 0–15 should be passed a message via its command queue. A
possible disadvantage of this scheme would be that every 1553 command
block in that controller’s memory would have to be identified with the proper
byte value in order to insure that the main VME cpu would not try to drive
that 1553 controller itself.

A third approach is to keep a table of 1553 controller ownership. The table

1553 Control for Co-proc Feb 2, 1989 page 3
there is a table of 1553 queue pointers. An entry is placed into this table the
first time 1553 I/O is done to a particular controller. One could add an
additional field to the entries in this non-volatile table which would declare
co-processor ownership for a given controller.

Alternatively, one could place a special code word in the controller’s memory
that could be interpreted as a declaration of ownership. Let a word near the
end of a controller’s 64K block of memory space be used for this code. The last
two words (at offset $FFFC from the base address) are actually the controller’s
register block. If we back up two more words before the register block, using
the offset $FFF8, we could use the word at that offset for the purpose. To make
it definite, the word at the offset of $FFF8 will be the code word. If its value is
in the range $C000-C00F, it denotes corresponding co-processor ownership. If
the VME system encounters values in this range when about to do 1553 I/O, it
should not do the 1553 I/O. If it is sending a word to the 1553, it can instead
build a small message to pass to the co-processor via its command queue.

After consideration of the above choices, the last one was chosen. The Data
Access Table entries which drive 1553 data acquisition are ignored when the
code showing co-processor ownership is encountered. When a word of data is
to be sent to a 1553 RT—to set a D/A, for example—a message is built and sent
to the co-processor’s command queue. When the 1553 Test Page is being run,
the code word in memory will have to be altered in order to get it to run. The
1553 driver that is called by that test page will not send any 1553 commands if
it finds that the code word exhibits 1553 controller co-processor ownership.

Co-processor Message Queues
How to talk to the VME system processor

Feb 7, 1989

The VME system software supports the connection of co-processors, which
are additional cpu boards which are accessible from the VMEbus. Up to 15 co-
processors may be supported. There is a system table which contains the
parameters specific to each co-processor.

There is a simple message queue communications scheme that allows
sending messages to a co-processor and accepting messages from one. A
separate queue is used for each direction of communication. This note
describes how a co-processor might find the message queues and use them.

The base location of the VME system table directory is at $00100000 on the
VMEbus. The table directory contains an 8-byte entry for each system table
numbered from 0–30. The Co-processor queue pointer table is table #15. As a
result, the 8 bytes for this table at address $00100078 are found as follows:

word (#entries)
word (#bytes/entry)
longword (Ptr to co-proc queue ptr table)

Using the co-processor#, perhaps obtained from some bits of the module
status register set by switches on the 133A cpu board, find the corresponding
entry in this table. Simply use as an offset the product of the co-proc# and the
#bytes/entry word above. There will be found the following:

longword (Ptr to co-processor command queue header)
word (Size of queue)
word (n.u.)
longword (Ptr to co-processor readback queue header)
word (Size of queue)
word (n.u.)

The command queue is used to send messages to the co-processor, while the
readback queue is used to receive messages f rom the co-processor.

Co-proc Message Queues Feb 7, 1989 page 2
At VME system reset time, the command queue is created by the VME system
processor. Its 16-byte header’s format is as follows:

word IN Offset to next message to go IN to queue
word OUT Offset to next message to be taken OUT of queue
word LIMIT Total size of queue including this header
word START Offset to first entry in queue (after header)
word KEY Key initialized to 'MZ' at reset time
byte INErr Diagnostic error count by IN user
byte OUTErr Diagnostic error count by OUT user
word INCnt Diagnostic count of messages placed INto queue
word OUTCnt Diagnostic count of messages taken OUT of queue

All offset words are offsets from the beginning of the header. At reset time,
the KEY word is set to zero, while the queue is cleared and the header
initialized. The IN, OUT, and START words are initialized to 16, the size of
the header; thus, the queue contents immediately follow the header. The KEY
word is set to 'MZ' as the last act of initialization.

The co-processor examines the command queue header when convenient.
When it finds the value 'MZ' in the KEY word, it alters that word to 'MQ' to
signal that it has recognized the command queue and will be monitoring it
for messages. The VME system will not place any messages into the
command queue unless it reads the value 'MQ' in the KEY word.

The diagnostic fields are there to allow inspection of queue activity by those
interested.

When a message is placed into the queue, the IN offset is used to determine
where to place it in the queue. There must be enough room so that the
message can be stored as a single contiguous block in the queue, or it cannot
be placed into the queue. The IN user must check the OUT and LIMIT offsets
to be sure that there is available space for the message. If the IN offset is ≥ the
OUT offset, and there is not enough room to place the message to end at least
one word before LIMIT, then a word of zero is written at the IN offset, and the
IN offset is reset to the START offset value. Then a further check must be
made to see that the message will fit before the OUT offset.

After the message has been copied into place, the IN offset is advanced by the
length of the message. Note that a message that causes the IN offset to be
advanced to equal the OUT offset must not be entered into the queue, as the
IN=OUT condition signifies an empty queue to the OUT user.

Co-proc Message Queues Feb 7, 1989 page 3
will always be even.

There are a few formats of messages that the VME system itself can generate.
To allow for these cases, the second word of a message is the type word, which
denotes the message type. The type word values used in such message will
always be less than 256. Private communication messages can be sent to a co-
processor by using type word values ≥ 256 and not conflict with those which
the VME system may generate.

The following messages are sent by the VME system to a co-processor:

Analog Control
word size =8
word type =0–15, 128–143
word index (any value)
word data

This is used for making a “D/A setting” to a co-processor. The type value
as well as the index value is stored in the analog control field of the analog
descriptor for the channel. Bits 6–4 of the type word are used to specify the co-
processor # used for determining which command queue is to receive the
setting message. The remaining bits of the type word and the entire index
word are arbitrary and have meaning only to the co-processor. They are
designed to enable the co-processor to determine what device or pseudo-
device it should set.

1553 Control
word size (=10,12)
word type (=15)
long ptr to 1553 command block
word/long setting data (2,4 bytes)

This is currently used for handling 1553 digital control. At a very low
level, a decision is made not to handle the 1553 output directly, but instead to
pass a message to a co-processor to handle it. The ramp co-processors in the
Loma Linda accelerator system must have exclusive access to the 1553
controller hardware interface that controls the ramped power supplies. This
scheme permits digital control to be handed over to the ramp cpu for
execution when it has time during its 720 Hz activity.

In the future, one can expect that it will be possible to send a digital data word
to a binary control word, denoted by type and index values analogous to those
used for analog control.

Co-proc Message Queues Feb 7, 1989 page 4
word type ≥ 256
(any)

Listype #40 is used to send this form of message to a co-processor. The ident,
in the long form, is as follows:

word lan-node
word co-processor# in range 0-15

It is the same as a channel ident, except that a co-processor number is used
instead of a channel number.

D0 Data Requests/Settings
System Implementation

Mar 4, 1990

Introduction
The new message formats for D0 data requests/settings, described in the

document “D0 CDAQ Network Data Transmission Protocol” by Alan
Jonckheere, use the Acnet header designed by Charlie Briegel to support
generalized task-task communications across a network. The Network Layer
software in the VME Local Stations supports these Acnet header-based messages.
This note describes the implementation of the support for the new data request
and setting messages.

Message flow
When a request or setting message is received, it is directed to a well-known

taskname RPYR. At initialization, the DZero Request Task creates a message
queue (called DREQ) that is used to receive Acnet header-based messages directed
to the taskname RPYR. NetCnct registers this taskname to the Network Layer.

Function NetCnct (taskName, queueId, eventMask, VAR taskId);

The eventMask is left zero, as the Request Task will simply wait on the message
queue rather than wait on an event. The Request Task then enters an infinite loop
that calls NetCheck to wait for a message and, upon receiving one, process it.

Function NetCheck (taskId, timeOut, VAR msgRef);

When the function returns with valid status, the message type is checked as
found in the first word of the Acnet header. If it is a USM (unsolicited message)
with the CAN bit set, the request identified by the message id is cancelled. If it is a
request message type, the message following the header (and the format block) is
checked. If it is a setting, it is processed immediately. If it specifies a request for
data, then a set of 3 message blocks are allocated for support of the new request.
(If the request specifies an existing active message id, then the existing request is
cancelled.) The basic request block houses the various parameters needed to
monitor the request activity. Two pointers are included in that block that point to
the other related allocated blocks—the internal ptrs block and the answers block.

D0 Data Requests/Settings Mar 4, 1990 page 2
The basic DZero request block (type #13) contains the array of listype control
blocks (LCBs) and the period specification.

MBlkSize MBlkType=13

ReqAHdr ReqAHdr#by

LinkNext

Update Cntr

$00

ReqAHdr=$20

$08

$10

$18 pSpec pSpec#by

Ptr to internal ptrs block (#14) Ptr to answers block (#9)

Request Request#by

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

pSpecCur

pSpec period specification …

Acnet header

8 2 0 8 pSpec sData #listypes

listype# dOffset #bytes #idents

identLng idents other

listype
control
block
(7 words)

…

Request=$38

pSpecDly pSpecBlk

$28

$30

$40

$48

The Internal Ptrs block (type #14) contains the array of internal ptrs that are used
to update the request (build the answers) efficiently.

pBlkSize ptrsOff=8 nPtrs pBlkType

intPtr1ptrsOff

$00

intPtr2

…

D0 Data Requests/Settings Mar 4, 1990 page 3
The answers block (type #9) is an Acnet message block of the form used by the
Network Layer software when the answers are to be returned to the requesting
node/task. It also includes a pointer to the parent request block (type #13) for
use by QMonitor for one-shot requests that need automatic cancellation.

MBlkSize MBlkType=9

HdrOff HdrLng

$00

$08

$10

$18 dest
Node

netQFlag

FmtOff FmtLng

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

anBCnt

Ptr to xmitStat word

destNodeOff #bytes-2

MsgOff MsgLng XtrOff XtrLng

$30

answer data …

#sets

setSize

Acnet header

$28

Ptr to request block (type#13)taskId —$20

$38 anBDly anBFSz

year month

day hour min sec

$40

$48

$50

FmtOff FmtSize status fmt spec fmt specfmt spec

… status … ……

answType=
$8012

status sequence#

cycle …

…

Request message processing also includes building the format block for inclusion
in the answer response message. To do this there is a format specification
template for each listype included in the LTT module. The template is scanned
according to the #bytes of data requested per ident. If the end of the template is
reached, and the #bytes requested is not exhausted, the request is in error. This
constitutes a new restriction on data requests, where the #bytes that can be
requested using a given listype is constrained according to the format spec

D0 Data Requests/Settings Mar 4, 1990 page 4
After the request support blocks have been filled, the basic request block is
inserted into the chain of active data requests using INSCHAIN. It is inserted at a
position adjacent to another request block made by the same node, if any, in
order to increase the likelihood of combining the answer responses of multiple
requests into the same network frames. Then the Update Task is triggered to
update the request and build the first set of answers immediately.

The request message is processed as it resides in the network frame input buffer
DMA’d into memory by the chipset. This processing includes “compiling” the
request into the internal ptrs array for later update processing. The message
count word in the network frame buffer is decremented to signal to the network
that the request message space is now free for future use. Note that initializing
the request as it resides in the network buffer (instead of using NetRecv to copy
it into the caller’s buffer) saves copying the ident arrays in the request, at the
expense of the additional responsibility of decrementing the message count word
when finished with the request message. Of course, both the LCBs and period
specification must be copied into the request block for later update processing.

Updating requests
The Update Task scans through all active requests each cycle to update any

which are due for processing. It checks for this new request block type (#13) and
builds the answers accordingly. The read-type routines are called for each listype
using the array of internal pointers to build the answer data. Other data must be
placed into the header of the answer message. The format block, however,
should remain constant for the request’s activity.

A facility for blocking answer responses is specified in the new protocol’s period
specification. The two parameters given are the maximum number of messages
to build before responding and the timeout delay before responding when the
maximum number of answers have not yet been built. The size of the answers
block is affected by the maximum number of messages parameter, as it lengthens
both the format block as well as the answer message itself. As a result, an
estimate of the size of the returned answers and the required format block with
any blocking is needed before the answers block (type #9) can be allocated.

When the Update Task has built answers that are to be returned to the requester,
it invokes the NetQueue routine to do it. Just before that, however, it calls
NetXChk to flush any existing queued messages that are going to a different
node or use a different protocol type (different SAP) to the network chipset. This
is to ensure prompt delivery of responses to different nodes and yet combine
answer messages directed to the same node into the same frame for greater
network efficiency.

D0 Data Requests/Settings Mar 4, 1990 page 5

The Update Task flushes all queued messages to the network after it has
processed all active requests each 15 Hz cycle.

D0 Settings
Processing setting messages is greatly simplified because it is all done

immediately and because the format of the setting message is nearly identical
with that of the request message. The message type word is different to indicate
that is is a setting, the period specification is absent, and the setting data offset is
specified in the first three words of the message header.

The many set-type routines have been enhanced so that they now return error
codes whenever they encounter errors. (Previously, the setting was simply
ignored.) This error response word is used in the setting acknowledge message
specified in the protocol. A zero value indicates no detected error in performing
the setting.

Since setting processing includes an overview scan of the validity of the message,
performed by DOSIZES, a status-only reply may be given to a setting in place of
the setting acknowledge message. For the status-only cases as well as the setting
acknowledge cases, refer to the error codes given in the “Error reporting” section
of this document.

D0 Data Requests/Settings Mar 4, 1990 page 6

D0 Request Module Road Map
The organization of the routines in the DZREQ module is as follows, where an

asterisk denotes a declared entry point:

*DZREQ

CANCEL INZBLOCK

DZDELETE
DOSIZESDOPTRS

DOANSW
DOFMTSZ

*DZDELCHK

*DZUPDNEW *DZUPDCHK

DZUPDATE

D0 Data
Request/Setting
Task

Update Task

QMonitor Task

PSCAN

SETTING

SETACK

The upper collection of routines comprise the DZero Request Task, which waits
for a message directed to the destination taskname RPYR and processes it. For a
request message, the CANCEL routine searches the active list chain for a match
against the message id (“list#”), the requesting node and source task id. If it finds
a match, it calls DZDELETE to cancel that active request. The INZBLOCK is the
bulk of the code which prepares the request block, internal pointers block and
answers block for later processing by the Update Task. It uses several other
routines to help break that job down into more manageable pieces.

For a setting message, the DOSIZES routine is invoked to check for a number of
obvious errors. If an error is detected, a status-only reply is given. If not, a
doubly-nested loop—outer loop over listypes, inner loop over idents—calls the
system routine SETLOCAL to process each setting listype/ident pair. An error
return aborts the processing of any remaining settings in the message, and
SETACK is invoked to deliver the setting acknowledgment message.

The middle section is the DZDELCHK routine which is called by the QMonitor
Task when it has detected the completion of transmission of an Acnet-type
message (block type#9) with bit#6 of the NetQFlg word set in the block,
indicating that the block is to be retained for re-use. (If the bit were not set,
QMonitor would simply free the memory for that block.) It checks for the case of
a one-shot DZero data request that should be cancelled. So QMonitor has to
recognize the type#9 message and be aware of the NetQFlg word. It also looks

D0 Data Requests/Settings Mar 4, 1990 page 7
the NetQFlg was set indicating that the block was queued for transmission to the
network.

The last section includes two entry points that are called by the Update Task to
process type#13 requests during its traversal of the active request chain.
DZUPDNEW updates the request only if it has never been updated before, whereas
DZUPDCHK examines the period specification and updates the request only if it is
time for an update. DZUPDATE shepherds the actual updating of the request and
checks the blocking parameters before queuing a response to the network.

Error reporting for requests
A number of potential errors are detected when processing a D0 data request

message. For most of these, a response is returned to the requester consisting of a
status-only reply, which includes only the Acnet header; neither the format block
nor the answer message is attached. Current error codes are as follows:

-64 period spec not implemented yet
-65 invalid message size
-66 invalid request header size
-67 invalid DZero message type
-68 invalid #listypes
-69 dynamic memory unavailable
-70 invalid listype#
-71 invalid identype (error in listype table)
-72 invalid ident length for listype#
-73 invalid #idents for single listype
-74 invalid #bytes requested per ident
-75 invalid offset to ident array in LCB
-76 format block/#bytes conflict
-77 requested #bytes exceeded format spec template
-78 invalid total #idents this request
-79 size of answers format block too large
-80 size of answers too large
-81 #sets of answers too large (blocking spec)
-82 invalid format spec (error in listype table)
-83 request message data offset not implemented
-84 LCB “other” parameters not implemented
-85 spare
-86 setting message data offset out of range
-87 setting message included period spec

In addition to the response to the requester, these errors are recorded in the Local
Station in local variables of the DZero Request Task. They can be inspected for

D0 Data Requests/Settings Mar 4, 1990 page 8

Another error that can be returned by the Network Layer itself is the following:

-21 destination task not connected to network (RPYR not connected)

This means that the 4-byte destination task name in the Acnet header was not
recognized by the node that received it. For systems which have Network Layer
support but have not yet been updated with the D0 data request software, this
will certainly result.

Setting acknowledgment error codes
The following list of errors can occur in response to a data setting message:

0 No error. Setting successful.
1 System table not defined for this listype.
2 Entry# (chan#, bit#, etc) out of range.
3 Odd #bytes of data
4 Bus error
5 #bytes too small
6 #bytes too large
7 Invalid #bytes
8 Set-type out of range (error in listype table)
9 Settings not allowed for this listype
10 Analog control type# out of range (error in analog descriptor)
11 Invalid binary byte address in BADDR table
12 Invalid mpx channel# (Linac D/A hardware)
13 F3 scale factor out of range (motor #steps processing)
14 No CPROQ table or co-proc# out of range
15 Hardware D/A board address odd
16 Bit# index out of range (associated bit control via channel)
17 Bit# out of range for this system’s database
18 Digital Control Delay table full (for software-formed pulses)
19 Digital control type# out of range 1–15
20 Co-processor command queue unavailable
21 Co-processor invalid queue header
22 Queue full or unavailable
23 Dynamic memory allocation failed
24 Error status from 1553 controller
25 Invalid 1553 command for one word output
26 Invalid 1553 Command Block address (must be multiple of 16)
27 Invalid 1553 order code in first word of Command Block
28 1553 interrupts not working
29 Cannot initialize 1553 command queue
30 No Q1553 table of pointers to 1553 controller queues
31 Invalid Motor table

D0 Data Requests/Settings Mar 4, 1990 page 9
35 Invalid data value.
36 Invalid #bytes of text in Comment alarm control
37 No DSTRM table of Data Stream queue pointers
38 Data Stream queue type# out of range
39 Data Stream queue not initialized
40 No MMAPS table of memory-mapped board templates
41 Invalid MMAPS table header
42 Invalid MMAPS table entry size
43 Invalid board# for MMAPS table
44 Invalid directory entry in MMAPS table
45 End of MMAPS table reached during template processing
46 Invalid MMAPS command type code
47 Invalid MMAPS loop params
48 Invalid MMAPS nested loop
49 spare
50 Invalid listype#
51 Invalid ident type# (error in listype table)
52 Invalid ident length for this listype
53 Little console settings switch disabled
54 Little console external settings switch disabled
55 Data Server setting not implemented

Limitations of present implementation
Features not supported in the initial version of DZero request handling are

the following:

Period specifications besides one-shots and simple periodic and blocking
Data offset specified at listype level
“Other” parameters specified at listype level
Error status reporting for each listype-ident pair

It is not intended to support data requests of the “Data Server” type for the D0
protocol. Idents in a request are ignored if they do not include the node# of the
local station receiving the request in the first word of the ident. This means that
one could send the same request to a group of nodes using the functional group
multicast form of network addressing, and each node receiving the request
would select out its own idents for answer response. (Obviously the requesting
node would need to scan the original request in order to be in a position to match
the answers with the questions.) Currently, however, the Acnet header-based
protocols do not permit sending request messages to a group of nodes.

1553 Data Acquisition
Do it with interrupts

Jul 21, 1988

Introduction
The previous 1553 driver in the VME systems did not use interrupts. It

only executed a single command at a time. For data acquisition via an RDATA
table entry, the driver waited until the command is finished and distributed
the data to the destination data table. This note describes the use of the 1553
board’s interrupt capability to allow for simultaneous data collection using
multiple 1553 controllers. Note that each 1553 board is in fact a stereo
controller board, with each of the two controllers able to operate indepen-
dently with DMA access to its own 64K on-board memory.

There is a separate queue for each controller, and each RDATA entry causes a
new entry to be placed into the queue for that controller. If the controller is
already active, the new entry waits in the queue until the previous activity
completes. If the controller is not active at the time the new entry is to be
placed in the queue, the command is initiated from the task level to “start the
ball rolling.” The interrupt routine checks for errors and dequeues the next
entry, if any. When no more entries remain in that controller’s queue, the
interrupt routine exits.

In order that the system does not have to know a priori how many 1553
controllers are available, the queueing mechanism is built in a dynamic way.
When an entry is to be placed in a controller’s queue, a check is first made of a
table of queue pointers to determine whether a queue is defined for that
controller. The identification of the controller is given by the bits 19–16 of the
memory address of the 64K block of memory assigned to that controller. If no
queue pointer is found, a new one is entered for that controller, and the
queue is initialized empty. The new entry is then placed into the queue.

The data acquisition logic of the Update task must eventually wait for the
1553 controllers’ activity to quiet down so the data can be copied from the 1553
memory into the ADATA and BBYTE tables for access by both the Alarm Task
and the Update Task logic which fulfills current data requests. A wait-for-
completion entry placed in the RDATA table can wait for a single controller or a
sequence of controllers’ activity to complete. This same entry copies the data
from the DMA buffer in the command block(s) into the data tables, taking
into account any necessary error processing.

Settings to 1553 hardware also use the queue because the interrupt will occur
anyway, given that the hardware switch on the board is enabled, and the
interrupt routine must know what to do. For an analog setting, a retry feature
could be requested and handled by the interrupt routine’s logic. Alternatively,

1553 Interrupts Jul 21, 1988 page 2
post-processing itself, since these are usually short one-word commands, and
there would be no particular advantage to try to overlap them.

Data structures
Data structures are designed for the 1553 queue pointer table and the

queues themselves. The queue pointer table is of fixed length—long enough
to hold a queue pointer for each 1553 controller in the system. The queue for
each controller could be allocated from dynamic memory, but it facilitates
diagnostics if it is statically allocated. The queue pointers could be always
present for each controller, but that is just one more table to have to get
properly initialized. The queue pointer for a given controller could, however,
be left in the table to be re-used when the next entry is to be queued for that
controller. If the base addresses for the various controllers were dense, the
header table could even be indexed by the upper bits of the controller’s
memory base address. This might make queueing more efficient.

Suppose a queue exists in each controller’s 64K memory space. (One must be
careful to avoid 32-bit data transfers to the 1553 controller board.) When it is
time to place an entry into a queue, the queue pointer is first checked for
existence. If it doesn’t exist, a queue is created in that controller’s memory;
hence, one need not initialize the queue ahead of time manually. At this time
the interrupt vector# should be written to the COM1553B chip and the
exception vector initialized in low memory. A base vector# can be assumed
by the system—say, $70. The vector# used by a given controller would be this
base number plus the controller#. A separate interrupt routine entry point is
provided for each controller. The interrupt code can be common after
recording the controller# by pushing it on the stack and joining the common
code. The queue pointer table is cleared at system reset.

Let’s assume that there are no more than sixteen 1553 controllers in one VME
system. (To reach this limit would require 8 stereo controller boards of the
present design.) The new system table Q1553 holds an array of pointers to the
controller queues used by that system. The table is cleared at reset time. The
index into the table is the controller #, the lower 4 bits of the upper word of
the controller’s base memory address; i.e., bits 19–16 of the 24- bit base address.

OUT2 OUT1 IN LIMIT

START KEY=$1553

Busy

RTSTAT1 RTSTAT0

1553 Interrupts Jul 21, 1988 page 3
an entry in the RDATA table, scans the chain and places only valid command
block pointers into the queue for that controller, using the IN queue pointer.
If the queue is empty when an entry is placed into the queue, the new
command is issued by the CMDS1553 routine itself. This dequeueing uses the
OUT1 pointer of the queue. The KEY can verify the existence of a queue.

The OUT2 queue pointer user is the code invoked by a later entry in the RDATA
table which waits for the queue to be emptied by the OUT1 user—the interrupt
routine. It can do any clean-up work required according to a type code in the
queue entry, set by the original IN queue pointer user. This could include
distributing the 1553 data read in to the various channel or byte entries in
ADATA or BBYTE, respectively. It can also copy the setting values into the
proper place.

Suppose the queue entry has this format:

Offset to
command block

Step size
Retry count

Type code

Ptr to memory

4 2 10

The offset word is the low word of the command block memory address, as
each controller is allocated 64K of memory space. Since this queue resides in
the controller’s memory block, the upper word is not needed here. The type
code refers to any post-processing that may be required for this entry for use by
the OUT2 user of the queue. The retry count is needed for making settings, if
retries are to be used. The step size is used in conjunction with the memory
pointer to specify the destination memory to which the DMA’d data must be
copied to place it into the ADATA table, for example, during post-processing.
(Note that this memory pointer must be accessed by words only.) The pointer
may also be the data word for a setting. It is better to keep everything dynamic
pertaining to the 1553 command in this queue entry rather than in the
command block, as the same command block may be queued multiple times
to the controller.

The queue can be allocated to reside at any convenient place in the 64K of
memory. Suppose we select the end of the memory for this purpose at, say,
the last 4K bytes. The offset from the start of the block would therefore be
$F000. (Note that the COM1553B chip registers are mapped to reside at the end
of the range—from $FFFC–$FFFF.) Using 4K bytes gives room for 500 eight-
byte entries.

The 1553 command block has this format:

1553 Interrupts Jul 21, 1988 page 4
Offset 2

Controller status

Command Status word Data word

Last Err Stat #Errors #Times command executed

Other input data words

…

The layout is shown for a command which inputs a 1553 data word. For the
output case, the status and data words are reversed. The first byte is an offset
to the diagnostic data kept for each command block. If the Offset=0, there will
be no diagnostic block.

Error status
To keep track of 1553 errors, allocate 4 bytes of each controller’s memory

space in the queue header (RTSTAT1 and RTSTAT0) for storing a longword
containing good/bad status for each of the RTs (up to 30) to which the
controller can be connected. These may be assigned BIT numbers in the VME
system, to facilitate reporting of RT-associated errors. (Current 1553 hardware
only has errors detectable to the RT level; it does not know about SubAddress-
specific errors.) If it is necessary to associate 1553 reading error status with a
channel, the relevant RT-related BIT# can be stored in the ADESC entry. A
request for alarm status might include this bit.

1553 Interrupts Jul 21, 1988 page 5
Copying readings into the ADATA table:

The 1553 data comes by way of DMA into its own memory; therefore, the
data values must be copied into the ADATA table where they are normally
found. As a proposal to save this time needed to copy the readings, consider
keeping a pointer to the reading value in place of the reading value itself.
Assume that we allocate 4 bytes for each the reading, setting, nominal and
tolerance values, in order to accommodate devices whose readings require
more than 16 bits of precision. Each value is a binary two’s complement
fraction of full scale, as usual. In the case of the reading, the pointer could be
stored there instead which points to the data word (or longword) itself. The
reading listype could be special code which references the data value
indirectly. The problem to solve is how to set this address properly without
doing it every time the RDATA entry is processed. If it had to be done each
time, no time savings would be realized!

1553 Test Application
A third type of queue entry is used by the 1553 test program. Just as with

the settings case, it is unnecessary to overlap test activities; only a single
controller is tested at a time. As a diagnostic aid, the first data word value
(input or output) can be written to the third word of the queue entry. A single
dedicated command block area is used to house each command used by the
test program. The command block is prepared, and the queue entry filled. The
command is issued, and the routine waits for interrupt activity to complete.
As in all the queue entries, the least significant bit of the offset word (to the
command block) is set to denote an error, again purely as a diagnostic.

 Data Request Timing
Comparison of 3 protocols

Mar 5, 1991

The VME Local Station software supports three data acquisition protocols. The
first is the Classic protocol, which was the original protocol developed in 1982.
On the token ring network, it uses a special SAP to distinguish it from Acnet
header-based protocols. The other two protocols supported are based upon the
use of the Acnet header that supports general task-task commun ication across a
single network. This note describes the performance by the local station software
in its support of all three protocols.

The Classic protocol is based upon listypes and idents, two abstract specifiers
which characterize control system data requests. The design is targeted for
distributed systems, in which a single network of local stations connect to the
control system signals of a part of an accelerator and contain a local database for
their own parts. Because of this, these systems can operate in the absence of a
centralized host system. Any host can participate by using the data request
protocols.

The second is the DZero protocol, which was developed to satisfy the needs of
the D0 control system. It is an evolution of the Classic protocol in that its design
is also based upon listypes and idents.

The other is the Accelerator protocol, developed for use with the Fermilab
accelerator control system. It was designed to work only with a central ized
database. The user program running on a Vax console is given a suite of DPxxx
routines that hide the central database accesses used to build a data request.

Two sets of timings were made for each of the three protocols. One was made
from the requester’s point of view; the other was made from the replier’s point of
view. The timing was measured by software using a timer of 0.5 msec resolution
in the first case and by observing signals available on a front panel connector of
the Crate Utility board that show each task’s activity in the second.

The example used in the measurements was a data request for readings and
setting words of a number of analog channels from one other local station. The
number was varied to get the incremental timing on a per channel basis. The test
programs are local station console page applications designed for testing each
protocol.

The first test measures the time from just before a one-shot request is made until
the time that the answers are available in the application’s data arrays. For a
minimal data request, the timing is about 5 msec independent of the protocol.
The timings for a number of channels > 1 is as follows:

Data Request Timing Mar 5, 1991 page 2
Protocol #chans One-shot, msec Per channel, µ s
Classic 1 5.5

5110.0 90

DZero 1 5.5
518.5 60

Accel 1 4.5
5123.5 380

A reason for the longer time per channel in the Classic protocol compared to the
DZero protocol is that the ReqData routine called by the test application includes
a “data server” functionality for local requests, so there is work to be done before
the data request message is prepared for the network. In the other two cases, the
test program prepares the network message before the timing starts.

The second test measures the additional time spent in the Update Task due to
updating the answers in fulfilling the repetitive data request. It does not include
any time for transmitting the results across the network. It represents only the
additional load on the cpu in producing a set of answers to the data request.

Protocol #chans 15 Hz, msec Per channel, µ s
Classic 1 0.4

510.6 4

DZero 1 0.4
510.6 4

Accelerator 1 0.4
512.0 32

The increased time used by the accelerator protocol is because it was not
designed for efficient processing. The key concept that is missing is that of
specifying an array of idents to be processed under a given listype.

 Data Streams
Sucking up message packets

Jan 2, 1989

Introduction
There are instances of the need to access data streams in the VME system.
This note explores a generic method of data request for such data streams.

Serial input data
One data stream that has already been supported is the serial input data
stream. A request is made for serial data using a specific listype with an ident
which gives the serial port that is being accessed. Typically, such a request is
made at 15 Hz, specifying a maximum size of the response buffer.

The response data to the request is a data structure consisting of a word
containing the number of bytes read from the serial port followed by the bytes
themselves. If the number of bytes = 0, then no serial data was collected since
the last time. When the number of bytes > 0, the data bytes comprise an
integral number of lines of data with each terminated by a carriage return,
limited by the size of the requested data. Both nulls and linefeeds are ignored
in serial input and do not appear in the buffer.

In the current implementation of serial data requests, only one requester
can access a given serial port at once; reading the serial input queue is
“destructive.” It would be better if more than one requester could sample the
serial input at the same time. A data stream protocol can allow for this.

Ramp readback data
Another type of data stream in the VME systems is a ramping co-processor’s
readback data. In this case, a circular buffer is continuously filled by the co-
processor with readings taken at 720 Hz, for example. Requests for this data
must be supported. In this case, it may be sufficient to access only the data that
is placed into the queue after the request is made.

Diagnostic data
One might imagine a diagnostic queue whose contents are to be sampled by a
host level diagnostic program. In this case, we need to be able to access data
written into the queue before the request is made.

Data stream handling
If there were a system table that housed pointers to such data stream queues,
then a listype could be designed which addressed one of these streams and
sampled what data it found there, returning it at the requested rate.

Response data format
For a general purpose data stream, let us assume that packets are written into
the queue consisting of a size word followed by (size-2) bytes of data. This is

Data Streams Jan 2, 1989 page 2
command queue. The response data returned in the requester’s buffer would
consist of an integral number of such packets. If the size word were zero, no
more packets would follow in the response buffer. If there were no data found
in the queue, then the first word would be zero, which is entirely consistent
with the general format.

Queue types
In order to deal with more than one format of data stream, one can either use
different listypes or standardize on a header format which includes a type
value. In this way, the processing can vary depending on the queue type.
Examples would use different header formats, use pointers rather than
offsets, and use both forward and backward “links” to support looking at
previous entries in the queue.

Options for data stream access
There are several possibilities for copying out the data from the queue to the
requester. One case might be to read a raw bytes stream. This could be suitable
for a low level access to serial port data, for example. There would be no
editing of the byte stream, nor would there be any automatic assembly into
lines of text. All such higher level logic would be handled by the requester.

A second example might be access to the raw data, stripping the size
word(s) placed in the buffer. The size would have to be assumed known and
constant for this to make sense.

And one might like to read old data—that which was placed into the
queue before the request was made. To do this, we need to specify how much
old data is requested. It could be specified as a number of packets or as a
number of bytes. For packets, we need to be using a queue format that
includes two “size” words per packet. The first would be the size of the packet,
as usual. The second would be the relative offset from the start of the packet
(the first size word) to the start of the previous packet. In this way, one can
work backwards packet by packet to see previous entries, allowing for the
packets to be of different sizes. If the packets were of equal size, and if the
offset to the packet located latest in memory were recorded in the queue
header, we could look backwards without these size words. But there must be
a parameter in the request which specifies either the number of bytes of prior
data or the number of packets of prior data.

Ident format
Consider the following ident format:

lan node

index

Data Streams Jan 2, 1989 page 3
The first word is the lan-node as usual. The second word is the index which
selects the desired data stream. The third word selects the options for data
collection from the queue. And the fourth word is the count of packets or
bytes of prior data requested.

Request processing
In order to allow sampling of the data stream which is non-destructive, one
must keep the “last” pointer within the request data block. Currently, there is
a single 4-byte pointer used to fulfill a data request associated with each
listype-ident pair. To handle data streams, this pointer must keep track of the
location of the last entry. But how can it know how to circle back to the start
of the buffer? It would seem that 32 bits is not enough.

As a solution, suppose the pointer value which is used contains two word-
size values. The first is an index into the data stream pointer table. This was
given by the ident and would normally be converted into a pointer to the
entry in the table. By refraining from converting it to a pointer we save two
bytes, which can be used as the second word to contain the offset to the last
data packet read from the queue. Now the internal pointer value can lead us
to the queue (or data stream) header as well as the position in the data stream
where we last left off.

op index

last offset

To keep the options value, let the entire second word of the ident be used
as the first word of the internal pointer. Then the option value is kept
internally to the request. But we can only keep 3 bits for this purpose, as the
most significant bit of the first word of the pointer must be used to mark a
pointer to an external answer fragment buffer contained within the request.

Data Stream Pointer Table
A system table is used to house pointers to data stream queues. This table

is indexed by the index value referred to above.

qType qKey Ptr to queue header

 Data Streams Implementation
Asynchronous packet flow

Sep 5, 1989

Introduction
Data streams are packets of data that are queued and made available to any
data requester. The difference between a data stream and normal data
acquisition is that a data stream packet may occur at arbitrary times
asynchronous to normal data acquisition. A simple example is data which
comes from a serial port. Another is 720 Hz sampled data collected by a ramp
co-processor. Another is clock event data.

Normal data acquisition is done synchronously, and typically with only a
single value which is collected at 15 Hz. On the other hand, a data stream can
have packets added to it at any time even with varying amounts of data. Data
stream support herein described makes this variable type of data accessible via
a normal data request.

DSTRM system table
The DSTRM table provides for itemization of the various data streams that

are supported. A data stream is identified by an index into this table, just as an
analog channel is identified by an index into the ADATA/ADESC tables. The
format of a DSTRM entry is as follows:

qFlags qType qSize

qPtr

eSize

–

hSize

–

data stream 8-character name

–– ––

The qFlags include a bit (#6) to indicate that at reset time the queue
associated with the data stream should be allocated from dynamic memory.
Another flag bit (#7) indicates that the queue has been initialized. The qType
is a small positive index which gives the type of queue header used, as
different types of data streams may require different queue management. This
index implicitly characterizes the means of queue initialization, packet entry,
and packet extraction. The Size word is the entry size of the packets in the
queue. For variable size packets, this word is zero. (In this case, the first word
of each variable size packet is the size of the packet including the size word.)
The hSize word is the amount of header space needed to support the data
stream itself. It is referred to as the data stream-specific header. The qSize is
the total size of the queue which is used to allocate the queue in the dynamic

Data Streams July 11, 1996 page 2
the queue header. In the case of a dynamically allocated queue, this pointer
points 8 bytes beyond the allocated area to allow for the common form of
dynamic header:

mSize mNext mType

The mSize is the allocated size of the memory block, the mNext is a pointer to
the next block in a chain (when used), and mType is the memory block type
value of $000B for this case. With the qPtr pointing just beyond this header,
the same qType can serve either the dynamic or the static case. This first part
of the DSTRM entry can be accessed using listype #53.

The 8-character data stream name can be used to identify the data stream
mnemonically. It can be accessed using listype #54.

Queue format
The data stream queue format consists of 3 components. The first part is

the same for all data stream queues. Its format is as follows:

qType eSize hOff qSize

total ––

Note that the values are copies of the DSTRM entry with a few exceptions. The
first word is the qType without any flag bits. (This could be changed if the flag
bits are needed, as there aren’t expected to be many queue types.) The hOff is
the sum of the header sizes of the first 2 components and is therefore the
offset to the data stream-specific header. The total longword is the total
number of packets ever written into the queue. For diagnostic purposes, the
queue header can be accessed using listype #52.

The second component of the queue header is the qType-specific header. Its
format for qType=1 is as follows:

IN LIMIT START –

The IN word is the offset to the space for the next entry to be placed into the
queue. The LIMIT word is set to the queue size. The START word is the offset
to the first entry to be placed. It is initialized to point just after the total queue
header.

The third component of the header is specific to the data stream itself. This is

Data Streams July 11, 1996 page 3
nFFull nFEmpty nLastCy rstTime

The first 3 words are diagnostic counts which give the number of times the
clock event hardware fifo was found to be full (and subsequently cleared), the
number of times it was found to be empty, and the number of clock events
found in that fifo the last time it was accessed to copy events into the Clock
Event Queue. The last word is the time stamp associated with cycle reset that
is used to convert the hardware free-running time stamps into ones that are
relative to cycle reset. A Data Access Table entry routine manages this header
component for the Clock Event Queue.

Additional queue header forms can be designed for other queue types and for
other types of data streams.

Data requests
A listype (#50) will be used to access data stream packets. The form of ident

used is as follows:

dsIndx nodelan

dsIndx

node

Both the short and long ident forms are shown. The requester identifies the
data stream index to select the data stream to be accessed. Another listype
(#51) is used to request “old” packets—packets which had been placed into the
queue prior to the time of the request.

The format of the internal pointer that is kept during request processing is as
follows:

dsIndx OUT

1=ExtAnsFlag

Note that the OUT word, which is the offset into the queue of the last entry
extracted is part of the internal pointer and not part of the queue header. This
means that different user requests for the same data stream do not interfere
with each other. This is a principal feature of the data stream approach. The
dsIndx value allows access to the queue header pointer via the DSTRM table
for fulfilling the request. When the ExtAnsFlag=1, the rest of the longword
is a pointer into an external answer fragment buffer kept with the request,
which just refers to the fact that the data has already been delivered from
another node to this node. This last feature is only used for locally initiated
requests and for data server requests, not for ordinary network data requests.

Data Streams July 11, 1996 page 4
packet data from a data stream queue is as follows:

#packets

pSize

packets
of

data

The first word gives the number of packets that are included in the response
data. If it is zero, the queue had nothing in it this time. The second word gives
the packet size. If it is zero, the queue uses a variable packet size, and each
packet of data will begin with a size word, so the user can process them.

When making a request for previously-written packets using listype #51, the
amount of previous packets that can be returned is limited by the size of the
requested #bytes. Such requests might be one-shot requests and indicate a
large buffer. Requests for only future data might typically be repetitive
requests using a moderate size request buffer. A one-shot request to listype
#50 would by definition return no information beyond the packet size.

Settings
One can make a data setting to write a packet into a data stream queue. If

the queue has variable length entries, a size word (=#dataBytes+2) is inserted
ahead of the setting data to form the packet. If the queue has fixed size entries,
the length of the setting data must be a multiple of the packet size to be
accepted. Either listype #50 or #51 can be used to write a packet into a queue.

The routine DSWrite is used to write packet(s) into a data stream queue. It is
declared as follows:

Procedure DSWrite(dsIndx,nBytes: Integer; VAR data: DType);

The dsIndx argument is the index part of the ident in the setting request. The
nBytes word is the number of data bytes, and the data parameter is a pointer
to the array of data bytes of the packet. If the queue uses variable size packets,
only one packet can be written with a single call to DSWrite. Note that in this
case, a size word is not included as the first word of the data array. The size
word is written (with the value nBytes+2) into the queue preceding the
packet data.

Settings should not be used to data stream queues other than those which are
normally written to by a task. Queues which are written to by interrupt

Data Streams July 11, 1996 page 5
Software modularization

Most data stream logic is centralized into the DStream module. The
branch tables indexed by qType are all in this module. This includes routines
which handle queue initialization, read access and write access. Generation of
internal pointers is done as usual by code in the ReqDGenP and PReqDGen
modules.

Data-stream specific code—that used to write into a data stream queue—
knows about the DSTRM table entry format and the first and third components
of the queue header. It does not need to know about the qType-specific header
component.

Variable size packets
As stated above, variable size packets are recorded in the queue using a

size word preceding the data. The size word is sufficient to allow data request
processing of the packets using listype #50. But looking backwards to retrieve
packets written previous to the request, in order to fulfill a listype #51 request,
is quite another matter. In order to make this possible, there is an extra word
in the queue that precedes the size word. This word contains the offset from
the start of the queue header to the previous packet’s size word. This allows
backwards traversal of the queue’s packets. When a variable packet size queue
is initialized, the START word points just beyond any data stream-specific
header. A zero word is placed there, and the IN word points to the next word,
which will become the size word of the first packet placed into the queue. The
extra previous pointer word that precedes the size word is not returned when
packets are delivered in response to a data request.

Data stream-specific header initialization
When a data stream queue is initialized, all data stream-specific header

space is set to zero. If nonzero values need to be entered there, the data
stream-specific code can notice a cleared value and set up any nonzero
initialized values needed.

Digital Control Pulse Delays
What goes up must come down!

July 12, 1996

Introduction
One might consider that digital control in an accelerator control system

consists merely of setting a bit to a “0” or a “1.” In hardware terms, this is likely
to be what is provided. But when the hardware which is being controlled is taken
into account, the situation is a bit more complex.

Turning a power supply on, for example, may be accommodated by a single
control line; but often, the supply expects to be driven by pulses rather than a
simple level set hi or lo. Whereas a single pulse might drive a reset line to a
power supply, it normally takes two control lines to support pulsed on-off
control. And, to make it interesting, the on-off status of the supply is normally
provided as a single status bit.

Timing is important also. The pulses acceptable for control of a large power
supply may have to be asserted for a significant fraction of a second, in order for
associated relay logic to make up. The required length of the pulse can vary
depending on the hardware being controlled.

A facility for generating digital pulses from memory-mapped digital output lines
has always been part of the VME system software. It was used in the earlier
Linac control system for building pulse control of power supply on-off
commands, where the length of the pulse might have to be about 0.5 seconds in
order to allow for heavy duty relays to make up.

This note concerns extension of the system so that non-memory-mapped hardware
can also be driven to form pulses—especially for 1553 hardware.

New pulse logic
Since the present memory-mapped pulse-forming logic is part of the 15 Hz
interrupt routine, it must be moved to the task level, where 1553 I/O can be
handled. A reasonable place to put this logic is in the Update Task, which is
concerned with processing entries in the Data Access Table to update the data
pool. It could be placed either before or after reading the data. If it is placed after
reading the data, then there will be fresh readings of the 1553 digital control data
to use as a basis for setting or clearing a particular bit.

Hardware/software control of pulse delays
The timing of a pulse can be done either in hardware or software. If it is done

in hardware, the software must be aware of it, so it will not then try to reset the
bit to its non-asserted state after the time delay. And, of course, if it is done in
software, the software must be aware of it and of the required time delay, so it

Digital Control Delays July 12, 1996 page 2
passed.

DCTABLE format
The Digital Control Table is used by the system to support digital pulse

delays. It consists of a set of 8-byte entries in the following format:

 Count type Ptr to memory bit#

 state

The count word times out the delay in 15 Hz cycles. The type byte contains the
entry type. The entry types used are:

0: memory-mapped digital control
In this case, the bit# is a value in the range 0–7, and the Ptr is
the address of a byte of memory. When the count reaches zero,
the designated bit of memory is either set or cleared according
to the value of the state bit.

1: 1553 digital control
Here, the bit# is a value in the range 0–15, and the Ptr is the
address of the data word in the input command block in the
1553 controller’s memory. (The input data word is simply the
readback of the output data word.) When the count reaches
zero, the word of input data is retrieved, the desig nated bit is
set or cleared, and the word is output to the 1553 interface.

1553 digital control—background
The interface to hardware connected to 1553 remote terminals is handled by

the VME system software through command block data structures. These blocks
are located in the 1553 controller’s own non-volatile memory. Each controller can
house up to 64K of memory, and the COM1553B chip that actually drives the 1
MHz serial protocol reads and writes this memory via DMA. The command
block structure houses the 1553 command word, which contains the addressing
information for the RT (Remote Terminal interface to a D0 rack monitor, for
example) and provides space for the chip to place a status word and up to 32
words of data it can receive from an RT. For output it contains the data word to
be sent to the RT and the status response word.

Control of 1553 digital hardware requires two command blocks as follows:

 Data word RT status 1553 Cmd Chip Cmd

 Data word RT status 1553 Cmd Chip Cmd

 Input command block:

 Output command block:

 $00XXXXX0+10

 $00XXXXX0

Digital Control Delays July 12, 1996 page 3
command block by 16 bytes. So, if the pointer to the input data word is known,
the location of the output command block can be determined.

The input data word is sampled, the control bit is set or cleared, and the data
word is stored in the output command block and sent to the hardware. The input
data word is then updated to match the word which was sent out, in order that
subsequent control actions to other bits in the same word can be handled before
another reading is made of the input data value. Note that in the case where
hardware control of a pulse delay is used, this update must not be performed, lest
subsequent pulse action of another bit in the same word cause a repeat of the first
bit’s pulse; furthermore, the hardware readback of the control lines must deliver
the non-asserted state for any reading of a hardware controlled pulse bit for the
same reason.

Software interface for digital control
Two means are provided for delivering settings which result in digital control

actions. The first is closer to the hardware; the second is another step away from
it.

The first type uses listype #21 to do digital I/O. In this case, the ident used is a
Bit#. The 4-byte format is similar to that used for analog channels, but the index
value is a Bit# instead of a channel#. The two ident formats are:

 Bit#

 node lan

 Chan#

 node lan

The format of the data for Bit-style digital control is two bytes in the form:

 delay type

The digital control type values are:
0: None (no control)
1: Toggle bit
2: Set bit hi (to 1)
3: Set bit lo (to 0)
4: Pulse bit hi for delay time
5: Pulse bit lo for delay time
6: Pulse one of a pair of bits hi for delay time
7: Pulse one of a pair of bits lo for delay time
8–11: Not used
12–15: Same as 4–7 but hardware-controlled

Digital Control Delays July 12, 1996 page 4
The delay byte gives the desired pulse delay in 15 Hz cycle units. A value of zero
means a “short” pulse. For memory-mapped hardware, this is intended to be
about 20 µ sec; for 1553 hardware, it will be much longer than that due to much
larger software overhead in the 1553 driver. If the delay has the value of 1, the
actual delay time will be less than one 15 Hz cycle, depending upon when in the
15 Hz cycle the command was issued. If a delay of many msec is required, one
should probably use at least a value of 2 to insure a delay of at least one 15 Hz
cycle. In the case that non-pulsed control is desired, using types 1–3, one may
optionally send only the single byte of data for the setting, as the delay byte is
not needed.

The second type of command resulting in digital control is the Chan-style digital
control. This is done via listype#22, using the channel form of ident. In this case,
there is more going on behind the scene. The channel-indexed descriptor entry
contains fields which relate both to that channel’s associated digital status and
digital control. This is not simple, so bear with me.

The form of data in the setting command for chan-style digital control is a two
byte value as follows:

 state ctrl bit

The ctrl bit has a value which designates which of the digital control bits is to be
used of those associated with that channel. In the current system, the value of
this byte has a valid range of 1–3. The state refers to which of two alternative
control actions are to be performed on that bit. Only the least significant bit in the
byte is used for this value.

The format of the digital status and digital control fields must both be examined
to see what choices there are for these digital control actions.

ADESC digital status field
The format of the digital status field has two variations:

 1

 0

 Bit#1

 typ

 Bit#3 Bit#2

 Bit#1

 invert

 Bit#2
 inhib2
 inhib1

 – #bits

Digital Control Delays July 12, 1996 page 5
first of the four bytes is shown in expanded view for clarity. The invert bits are
used by the system software to invert the sense of the raw data that is returned in
response to a data request for channel-associated status using listype#5.

There are 3 invert bits which correspond to the possible 3 status bits. These are
sampled from most to least significant—that is, left-to-right—in order of
successive Bit#’s 1,2 and 3. The least significant pair of bits gives the number of
bits related to channel-associated digital status and control for this channel.

Bit#4 of this first byte is used to identify which format type is in use. For format
type#0, up to 3 status bits can be supported which are associated with a given
channel. The restriction is that they must be Bit#’s in the range 0-255. The
parameter page on the small consoles recognizes the value $FF as denoting an
inhibit of display of status data for that bit. (It may be used for control only.) This
is used for control actions which have no related status bit.

For format type#1, either one or two status bits can be supported. The first Bit# is
given by the next two bytes; a second Bit# can be declared using the 2nd and 4th

bytes of the 4-byte field. The obvious restriction is that the second Bit# must be in
the same 256-bit block of Bit#’s as the first Bit#. In practice, this tends not to be a
significant limitation. For this case, the parameter page logic samples the top two
bits to get inhibit information about its status display for these bits.

Text for status display
The text used by the parameter page for display of digital status data is found as
part of the title text for that channel. When there is a single Bit# used, the last 6
characters of the title (characters 13–18) denote two states—the first 3 characters
for the nominal “0” state and the last 3 for the nominal “1” state. (The invert bits
are used to reverse this logic from the nominal.) When 2 or 3 bits are used under
format type #0, the same 6 characters are used to indicate both states of each bit;
therefore, only a single character is available for each state. When 2 bits are used
under format type#1, a second 6-character field is taken from the title for support
of display of the second bit’s status. This field is characters 6–11 of the 18-
character title field. In this case, there is not much room left for any descrip tion
of the channel, so the channel’s name will have to be sufficient. Of course, all this
may change with a revision of the analog descriptor format.

ADESC Digital control field
The digital control field is 6-bytes in length and also exhibits two format

types:

Digital Control Delays July 12, 1996 page 6
 Bit#1 dct#1 Bit#2 Bit#3 dct#2 dct#3

 Bit#1

 dct#1

 Bit#2

 — dct#2

 type delay

As for the digital status case, there is support for up to 3 digital control actions
related to a channel, corresponding to the digital status bits described above. If
extended Bit# support for Bit#’s > 255 is used, there is support for one or two
control actions. The dct values consist of two 4-bit fields. The most significant
nibble of the byte is the pulse delay, if needed, and the least significant nibble
gives the digital control type# in the range 0–15 described in the table above. All
control actions listed in the table can be supported. For types 6 and 7 (and the
hardware-driven equivalents 14 and 15, there is reference to a pair of bits used
for separate control lines. Such a pair of control lines must be interfaced as a pair
of adjacent bits in order that itemizing one bit of the pair implicitly defines the
other. Thus, they may be bits 7 and 6, or they may be bits 1 and 0, but they cannot
be bits 6 and 5, for example. Either bit of the pair can be entered in the database;
the other is found by exclusive or of the Bit# with the constant “1.” In the
parameter page treatment of this facility of digital control relating to an analog
channel, the state value of 0 or 1 is taken from the cursor location at the point of
interrupt; if it was in the left half of the status display field, the state value is 0,
otherwise 1. It is often referred to as the left/right state for this reason.

Let’s have an example
Suppose there is a power supply which supplies current to a magnet and

which has an on-off status bit and an “interlocks tripped” status bit, and it uses a
pair of on-off control lines plus a “reset” control line which resets the “interlocks
tripped” condition. How should the fields in the analog descriptor be
programmed to support this device?

Let’s not presume that the Bit#’s are small. We must therefore use the format
type#1 described above. Suppose that the Bit#’s are as follows:

Bit# Meaning
19F On control pulse (0.5 sec hi-active pulse)
19E Off control pulse (0.5 sec hi-active pulse)
19D Reset control pulse (1.0 sec hi-active pulse)
1AF On-off status (1=on)
1AE Interlocks (0=tripped)

One possible solution would be the following:

Digital Control Delays July 12, 1996 page 7
The title text in the local database might be: "---- OK BAD OFF ON"
And the parameter page display might appear as follows:
"MVT102- OK ON 1013 A " or

"MVT102- ...BAD OFF... 0.622 A "

Summary
The VME system software supports digital status and control with choices to

accommodate a variety of hardware characteristics. The digital data can be
memory-mapped bits, or it can be interfaced via 1553. Control bits can be set or
cleared or toggled in a “dc” mode, or they can be pulsed hi or lo with a choice
upon length of the pulse for software-controlled pulses. Hardware-controlled
pulsing is also recognized and provided for. Pairs of bits can be used to provide
two control lines that relate to a single status bit.

There is also provision for channel-related status and control bits for the
convenience of displays such as the parameter page. Status field text can be used
to show the state of status bits, and related control actions can be accepted with
only simple setting commands issued from the display program; the details are
kept in the local database.

It is hoped that this brief tutorial will serve as an introduction to the variety of
digital status and control support provided by the VME systems. In addition, it
may inspire host level user programs to devise ever-simpler means of dealing
with digital I/O, found in real life to be rather more complicated than simply
setting 1’s and 0’s.

Floating Point Data Requests
Just the engineering units, please!

Mar 3, 1989

The VME systems include a local database of the scale factors for every analog
channel. Normally, a data request for the reading of a channel returns the raw
channel reading value. The user is expected to separately collect the scale
factors and use them to scale the results. This approach has always been taken
in consideration of the limited floating point computational abilities of the
local stations, which used an 8 MHz 68000 processor. A floating add took
about 100 µ s while a floating multiply took 150 µ s.

Now that the stations are being constructed out of 20 MHz 68020 processors
plus a 68881 floating point co-processor, it should not require much time to
do such conversions to engineering units. The computation required is a
conversion of the raw data value to a floating point fraction of full scale, a
floating multiply by the fullscale value for that channel, and an optional
floating addition of an offset value.

The types of data which need these conversions are readings, settings, and
nominal and tolerance values. A new set of four listypes are designed for this
purpose. Only systems updated with this feature will be able to handle such
requests, as each local station which sources a channel‘s data must do the
conversions; it cannot be done only by the requesting node, of course, as the
scale factors only reside in the local data base of the original station. Any
station will be able to make such requests, however, even if it doesn’t support
the feature itself.

In the listype table, the entries for the four new listypes should indicate the
table# for the ADATA table, and the ADESC entries must be inferred from it.
When these two tables are combined into one, this will be easier. Let the new
listypes be 40, 41, 42, and 43, in parallel with 0, 1, 2, and 3. Listype 44 could
support the delta setting referred to below.

Systems not using a 68020 could use their software floating point routines for
the computations, assuming the use of the feature would not be extensive.
Or, such systems could merely decline to support such requests.

Setting support should also be added for these four new listypes. This
involves working the linear formulas backwards and watching for the
possibility of dividing by a fullscale value of zero. If overflow is reached, the
setting should either be clipped to fullscale or not executed at all. A delta
setting should also be included for completeness.

The number of bytes associated with the listype used must be 4, or the request

Flt Pt Data Requests Mar 3, 1989 page 2
precision values are desired. This would be easy to do, as the 68881 does all
the hard work. One would probably have to implement double precision scale
factors for this to be meaningful, however.

Note that neither the tolerance conversion nor the delta setting uses the
offset value. Reading, nominal, and tolerance use the A/D scale factors, while
setting and delta setting use the D/A scale factors. Out-of-range setting values
are clipped to the nearest end of range. Or, one might choose to ignore
settings which are way out of range.

Internal details:

A new read type routine #11 is used to process the engineering units scaling.
The new set type routine #13 handles settings with this extra processing,
while set type routine #14 handles the delta setting case.

The use of register D5 to hold the field offset in the ADATA entry must be
presumed on entry to the setting handler SETENG or SETENGD. This provides
the offset needed by the set routine to determine the type of processing
required to perform the setting.

This engineering units feature is supported by the three procedures in the
(new) READENG module: READENG, SETENG, and SETENGD.

Moderately Fast Data Collection
Up to One Kilohertz with an IRM

Mon, Mar 7, 1994

Introduction
The Internet Rack Monitor (IRM) includes hardware support for 1

KHz digitizing of all 64 analog channels, with possible expansion to 128
channels using two analog interface boards. This note describes a scheme
for data request software support of this kind of data, so that it most easily
fits into the Classic protocol. The scheme supports a data request for
sampling digitized data at rates up to 1 KHz. The data points returned are
time-stamped and can provide times relative to a selected Tevatron clock
events or times relative to the time of the first data point returned in
reply to the request.

Hardware
The hardware writes 64 channels of data each millisecond into a 64K

byte circular buffer. This provides room for 512 sets of data, so the
circular buffer wraps every half second. A new listype (#82 decimal) is
supported for handling access to this data. The ident used with this listype
is 3 words in length: the node#, the analog channel#, and an optional clock
event specification. From the channel#, the software deduces the area of
memory where the 64K buffer resides by adopting a channel assignment
convention. We usually assign channels 0100–013F for the first/only 64-
channel block in an IRM. In case a second analog board is used, we assign
channels 0140–017F to the second 64-channel block. (Actually, any block
of 64 channels that starts on a 64-channel boundary is ok, with bit#6
nonzero selecting the second block.) The first block uses memory
addressed as 0063xxxx, and the second block uses memory accessed at
0062xxxx. The registers are based at FFF58300 for the first block and
FFF58200 for the second block. The following table summarizes this:

Module Chan Memory I/O registers
IP_d 0100–013F 0063xxxx FFF583xx
IP_c 0140–017F 0062xxxx FFF582xx

In order to activate the A/D hardware scanning, it is necessary to install a
type $28 entry in the Data Access Table. The format of this entry is as
follows:

2800 InitChan I/O_register_base
— — Mem_base #Chans

As an example,
2800 0100 FFF5 8300
0000 0000 0063 0040

Only the upper word of the memory base address is given, as its size is

Moderately Fast Data Collection p. 2
This example serves to copy all 64 readings from the most recent complete
set of digitized data in the circular buffer memory into the data pool. The
base address of this memory is 00630000, and the I/O register base
address is FFF58300. The presence of this entry in the Data Access Table
enables the A/D scanning hardware logic. It also provides 15 Hz sampling
in the data pool.

Request protocol
How is the sample period specified? It can be derived from the

request reply period and the #bytes of data requested. The requester must
provide enough buffer space to hold the data desired, which is central to
the Classic protocol, anyway. Given the buffer size and the size of an 8-
byte reply header and providing for 4 bytes per data point, the number of
points that can be fit in the buffer is known. Given the time between
successive replies, and assuming the rate of digitization is 1 KHz, the
number of points available in the circular buffer memory is determined.
The average time between points is then
(#points_available)/(#points_in_buffer). Expressed as a delta set#,
including a fractional part, it is used in the loop that maps the data points
in the hardware circular buffer into the points to be placed into the user’s
buffer. Note that the scheme adapts to any variation in the time of
updating the data request, because the point last copied is remembered
between updates and therefore effectively measures the time since the
last reply.

The reply format is then
time_of_first point (4 bytes)
time_between_last_two_events (4 bytes)
array of points as data, time (4*n bytes)

The format of the reply header is two longwords, occupying 8 bytes. The
first longword is the time of the first data point in the reply buffer,
expressed in units of 10 µ s. The second longword is used only with the
clock event# option. If this option is selected, by specifying a nonzero
event# in the low byte of the third word of the ident used in the data
request, then the second longword is the difference in time between the
last two clock events of that kind, also expressed in units of 10 µ s. It is
needed to cover the case that the clock event occurred during the time
represented by the reply data that follows. The requester should add each
point’s time value to the time_of_first_point to get the digitizing time of
each point. If this time > delta time between the last two clock events, then
reduce the time by this delta.

Moderately Fast Data Collection p. 3
the circular buffer to begin sampling data points. If the period is one cycle,
say, then the first reply provides data sampled over the one cycle period
just preceding the request.

In case the clock event option is not used, the second longword is
meaningless to the requester. But the first longword provides the time of
the first data point relative to the time of the first data point in the first
reply, which is one reply period prior to the time the data request is
initialized.

The format of a data point is a pair of 16-bit integers. The first word is the
data value in the usual two’s complement left-adjusted fraction of full
scale. The second word is the relative time since the starting time in the
reply header, in units of 10 µ s. The relative time value of the first data
point in the reply = zero by definition.

Example
Suppose it is desired to collect 100 Hz samples from an analog

channel. If the reply period is specified as 1 cycle, and the station runs at
15Hz, then 6–7 points should be collected every 15 Hz cycle. If the reply
header is 8 bytes in length, then the requester should ask for 8+4*7=36
bytes of reply data. When it is time to update this request, the front end
notices, for example, that 66 data sets have been stored in the hardware
circular buffer since the previous update cycle about 1/15 second earlier.
To perform the current update, 7 points will be selected out of 66
available. The delta set# is then 66/7=9.42857, on the average correspond
ing to about 106 Hz. By accumulating this value in the copying loop and
taking the integer part each time to advance to the next set, the 66 points
are sampled with 9–10 set spacing. On another update cycle, suppose that
70 data sets have been collected since the previous update cycle. Then the
delta set# would be 70/7=10, with no fractional part. This would result in
10 set spacing, or 100 Hz exactly.

If the user specifies a larger buffer in the above case, say 8+4*70=288
bytes, then the calculated delta set# might be 66/70=0.94286, so some
duplicate data values would appear in the reply data. In all cases, the
reply buffer will be entirely filled. Since the circular buffer wraps every
512 ms, one should not specify a reply period more than 0.5 second (seven
15 Hz cycles or five 10 Hz cycles). Also, the largest buffer size necessary is
8+4*512=2056 bytes, since only the last 512 sets of 64-channel data are
stored in the hardware circular memory buffer.

One-shot case

Moderately Fast Data Collection p. 4
listype, there is no reply period indicated. In this case, an attempt is made
to reach back as far as possible to collect data to fill the requester’s buffer.
This might be a good time to supply a large buffer, in order to get the
fullest time resolution available for later perusal. This facility allows for a
host to monitor for some trip condition, say, and make a request that takes
advantage of the hardware circular buffer memory to snapshot the last 0.5
seconds of a signal.

Memory-mapped I/O for D0
Selective access for DAQ boards

Nov 12, 1991

The online data acquisition used in D0 is based upon VMEbus access to the
physics circuit boards. These boards often consist of a complex structure of
memory-mapped registers. Some of these registers are normally not
addressed at all. Some are read-only. But for downloading purposes, and for
reading back to insure that the setting “worked,” it is desirable to be able to
transfer data to/from the board as if it were accessible contiguously. This note
describes a means for the VME Local Stations to handle a variety of specially-
configured memory-mapped boards in this pseudo-contiguous fashion.

There is a table in the VME systems that holds the memory map information
for a number of boards. Listype #46 is used to allow access to boards whose
memory maps are described in this table (#16 called MMAPS internally). (Listype
#47 is used to access the MMAPS table itself for downloading purposes.)

The ident used with Listype #46 is a memory address which is the base
address of the board. It is expected to have several least-significant zero bits as
used on the VMEbus. For this document, let’s assume that the board always
resides on a 64-byte boundary, at least. This will allow 6 bits that can be used to
denote the board type. (It will be seen that this does not limit the accessibility
beginning at areas of the board which are offset from the base address.) This
allows a single listype to be used to access several different boards—up to 63.
And it means that the D0 database can contain the address portion of the
ident in 4 bytes. The ident format is as follows:

lan node

32-bit

 address

Again, the low order few bits of the address hold the board type number. The
actual base address of the board is assumed to end in just as many zero bits.

Memory-mapped I/O Nov 12, 1991 page 2

Memory-mapped I/O Nov 12, 1991 page 3

'M' 'M' MMDir #entries last errCode

—

Board1

Board2

AccType Offset #bytes Mask

AccType Offset #bytes Mask

AccType Offset #bytes Mask

Board1:

MMDir:

…

…

Board2:

…

address ident last used — —

—

#reads #writes #errors

—

#reads #writes #errors

—

AccType Offset #bytes Mask

…

MMAPS Table Memory Layout

0000:

0008:

In the MMAPS table format, the first word is a key to check for a valid table. The
second word specifies the offset to the first directory entry indexed by board
type#. (Board0 is not used in order to check for the presence of the board type
in the low order bits of the ident address.) The third word gives the number
of board types which are supported. The fourth word is the last nonzero error
code produced. (A list of these error codes can be found at the end of this
document.) The next longword is the last address ident used in read or write
access using the MMAPS table.

From the board type, the directory entry is found consisting of an offset (from
the start of the table) to the array of command entries that describe the
memory map for that board plus some diagnostic counters, including counts
of successful read and write accesses and a count of errors. The number of
commands to describe each board can be variable; the directory entry only tells
where the first command begins.

Memory-mapped I/O Nov 12, 1991 page 4
the memory is accessed. The only access type initially supported is type=1,
denoting a sequence of memory words. The second word is an offset value to
be added to the “current” target address before processing this command. The
third word gives the number of data bytes to be processed for that command.
The fourth word allows for a mask that identifies the read/write bits in each
word processed for purposes of verifying a successful setting. At the con clu
sion of the processing of a command, the current address points to the next
location beyond the block, allowing for the loop processing described next.

The second form of command is the loop command. The first word of a loop
command is $D0D0. (Read this as “D-zero DO” loop—small joke.) The second
word gives the number of subsequent commands that comprise the body of
the loop. The third word specifies the loop count. Loops can be nested.

As an example of a series of commands to access a hypothetical board which
has 16 groups of 64-byte blocks, in which it is desired to access only the 3rd–5 th

and the 25th–31st words. The loop command form would be used for the 16
groups, and the two sets of registers would be specified by one command for
each. A third command would serve to skip to the end of each group. The
following specification could be used:

D 0 D 0 0 0 0 3 0 0 1 0 —

0 0 0 1 0 0 0 4 0 0 0 6

0 0 0 1 0 0 2 6 0 0 0 E

0 0 0 1 0 0 0 2 0 0 0 0

F F F F

F F F F

F F F F

Note that, as a crude check, the sum of the non-loop command offsets and
#bytes words should add up to the length of the block in bytes. For this
example, one would specify that the number of bytes needed to access the
board was (6+14)*16= 320.

As each command is processed, a check is made that the #bytes remaining to
be processed as specified by the user is large enough to cover the block
described by the command. If it is not, then the number of bytes of data to be
processed in the block is reduced to match the number of bytes remaining. All
this means is that the bytes requested can end anywhere within the command
processing. In addition, if a bus error is encountered during access to any word
of memory, further processing is terminated at the listype level. This can
happen if the board is not plugged into the crate, for example, or if the vertical
interconnect is unplugged.

Memory-mapped I/O Nov 12, 1991 page 5
handled for the same physics board. The VME system doesn’t really know
about boards; it only knows about memory maps given by entries in the MMAPS
table. The table contents can be entered manually, or they can be downloaded
by a host utility program. The format of the table is designed for efficient
processing by the VME system software. The inner loop for processing the
command which specifies a block of memory words is as small as it is for
normal memory access.

Diagnostic error codes in MMAPS table header or a board’s directory entry:

2:Invalid MMAPS table entry size (odd or < 8 bytes)
3:Invalid board# (> #entries)
4:Invalid board directory entry (offset to command list)
5:End of MMAPS table reached during command processing
6:Invalid command type code
7:Invalid loop command parameters or invalid nested loop
8:Verify failure after entire setting
$4000: Bus error occurred during access to target memory

Error codes returned to CDAQ are 42–48 for the above codes. In addition are
these relevant error codes:

40:MMAPS table doesn't exist in VME station
41:MMAPS table is invalid (key ≠ 'MM')
4:Bus error occurred during read or write access
7:Invalid #bytes
52:Invalid ident length

Message Queue Formats
How does the message queue work?

Sep 14, 1988

This note describes the format of the shared memory Message Queue used for
communication with another processor on the VMEbus. It is implemented as
a simple one-way queue. Messages are placed in the queue by the VME
System computer. The other processor removes messages from the queue and
interprets the command accordingly.

Initialization
The VME System computer initializes co-processor message queues at reset
time. One of the standard system tables—table #15—contains pointers to the
message queue for each co-processor. This queue pointer table, indexed by co-
processor number, has 8-byte entries of the following format:

Message queue ptr Size

The message queue pointer is followed by the total queue size.

Each co-processor queue has the following format:

 IN OUT LIMIT START

 KEY INERR INCNT OUTCNTOUTERR

+$00

+$08

+$10

$10 $10 size $10

'MZ' 0 0 0 0

Queue body:

Queue header:

The values beneath the words in the queue header are the initialized values.
The other processor, when it recognizes the presence of the queue, examines
the KEY field. If it has the value 'MZ' it changes it to 'MQ' to signal to the VME
system cpu that it has “seen” the message queue. (Until this happens, the
VME system cpu will not place messages into the queue.)

Queue header
The IN pointer (offset from the start of the queue header) points to the next
available space in the queue for a message. It is altered by the VME system cpu
as the last act upon placing the new message into the queue, after first
checking that there is room available to hold the message.

Message Queue Sep 14, 1988 page 2
The OUT pointer points to the next message to be removed from the queue

by the co-processor. It is altered after the co-processor has removed the
message from the queue. When the two pointer IN and OUT are equal, the
queue is considered empty. When they are unequal, there is at least one
message in the queue.

The LIMIT word is the total size of the queue (in bytes). It is determined by
the contents of the VME system table directory.

The START word is the offset to the start of the queue body. When new
entries have reached LIMIT, the IN pointer circles back to START.

The KEY word has the value 'MZ' when the queue is initialized, and it is
changed by the co-processor to 'MQ' to signal that the queue has been
recognized.

The INERR byte counts times when the VME system cpu tried to place an
entry into the queue, but found the queue full.

The OUTERR byte is incremented by the co-processor cpu when it
encounters an error in processing the messages it removes from the queue.

The INCNT word is incremented for each message successfully placed into
the queue.

The OUTCNT word is incremented by the co-processor when it successfully
removes a message from the queue.

Protocol
When the VME system cpu has a message to place into the queue, it checks to
see that the KEY word has the value 'MQ'. It then checks to see if the message
can fit. If IN≥ OUT, it checks for space between IN and LIMIT; if there is not
enough space there, a zero is placed at the word pointed to by IN, and IN is
reset to START. If either IN<OUT or IN had to be reset to START, it checks for
space between IN and OUT. If there is room, the message is copied into the
space, and the IN pointer is advanced by the message size.

The co-processor examines the queue at its convenience. (Note that the co-
processor had to have a priori knowledge of the location of the queue.) If the
queue is not empty (IN≠ OUT), a message is removed from the queue. The
word pointed to by OUT is examined. If it is zero, OUT is reset to START, and if
IN≠ OUT, the word at START is examined. When the co-processor has
removed the message from the queue, it advances the OUT pointer by the

Message Queue Sep 14, 1988 page 3

Message format
Messages placed in the queue for a co-processor conform to a simple structure:

size

type

addit-
ional
data
words

The first word is the message size, including the size word. The second
word is the message type. Additional message contents may follow the
second word. So the minimum message size is 4 bytes, in the case that no
additional data is required for a given type. The type word and any additional
data have meaning only to the co-processor, not the VME system.

Generic message setting
To send a general message to a co-processor in a VME system, one has only to
send the appropriate setting, specifying listype #40. The ident used with this
listype supplies the co-processor number (0,1,2…). The number of data bytes
specified in the setting—incremented by 2—becomes the size word of the
message placed into the selected queue. The first word of the setting data,
then, is the type word of the message. Additional data words follow the type
word. Note that the VME system does not care about the type word value.

Analog control
There is a format in use for analog control, in which an analog channel may
be set which results in a message sent to a co-processor queue.

size

type$00

index

data

In this case, the type value is given by a byte from the analog control field
of the analog descriptor for that channel. The index value is given by a word
from the analog control field. The data word is the word of setting data in the
analog control setting. The size value is therefore 8 bytes.

 Motor Control Specification
Analog control field parameters

Jul 14, 1990

Motor control is specified via the contents of the analog control field of a
given channel's analog descriptor. A number of cases are supported to handle
various forms of motor I/O interfaces. This note describes the features
available and how to specify them.

The form of the analog control field for a motor is as follows:

0 2

bit#0–7

address

Vert Int 10
Step/dir

The analog control type byte is $02 for motors. The values of the second byte
provide for most of the variations. If the value of the byte is ≥ $20, then the
last 3 bytes are interpreted as a pointer to a 1553 command block in the range
$200000 to $EFFFF0 which can be used to send the two’s complement count
of motor steps to the hardware. In this case, the hardware is assumed to
generate the pulses to step the motor automatically.

If the upper 3 bits of the second byte are zero, then we have the case of a
memory-mapped digital I/O motor interface, and the local station cpu will
arrange to deliver the motor steps pulses of about 20 µ sec duration to the
motor at 150 Hz. The rest of this note deals with variations of this memory-
mapped case.

The least significant two bytes of the byte address used for motor control are
given by the last two bytes of the field. The upper two bytes of the byte address
are assumed to be $FFFF to indicate VME short I/O space in the local station
crate. A variation of this is specified by bit#3 marked “Vert Int 10” above. If
this bit is set, the upper two bytes are assumed to be $10FF, to indicate access
to VME short I/O in a slave crate accessed via the Vertical Interconnect
hardware. The slave crate is assumed connected to VI card#1, port#0. This
feature allows testing Vertical Interconnect access.

Bit#4 is used to distinguish two types of hardware control of memory-
mapped motor interfaces. When it is zero, the bit# indicates the CW pulse bit,
and the adjacent bit (bit# exclusive-OR’ed with 1) indicates the CCW bit. For
example, if the bit# given is 7, then the CW pulse is connected to bit#7 and
the CCW pulse is run by bit#6.

Motor Control Specifications Jul 14, 1990 page 2
When bit#4 of the second byte is a one, the bit# indicates the step pulse bit,
and the adjacent bit is the direction control bit. Simultaneously, the bit# refers
to the CW limit switch status, and the adjacent bit is the CCW limit switch
status, where 1=limit switch active. This limit switch status byte is located
either 1 or 2 bytes from the control byte, depending upon whether the address
given is even (1) or odd (2). The Ironics digital I/O board is interfaced to odd
bytes only, whereas the BurrBrown board is interfaced to consecutive bytes.
To make this work with the latter board, motor control bytes should be
connected to even byte addresses only.

To specify whether pulses should be low active or high active, the least
significant bit of the bit# is used. If the given bit# is odd, high active pulses
are issued. If it is even, then low active pulses are used. Since the bit also
indicates which one is used for CW pulses (or for the step pulse), one cannot
switch polarities independent of the hardware connections. So this factor
must be considered when planning the wiring to the motor interface.

Summary
Several variations of motor control can be specified via proper settings of

the analog control field. Motors can be controlled via 1553 interface, Ironics or
BurrBrown digital I/O boards, CW/CCW or step/direction interfaces, hi-
active or lo-active stepping pulses, and optional access via the Vertical
Interconnect hardware to a slave VME crate. Providing more support
variations than these may require a larger analog control field or indirect
access via another table of specification parameters.

System Tables and Their Uses
Downloadability

Wed, Nov 23, 1994

There are 32 tables defined in a table directory that is located at $100000
in 133A-based stations and $400000 in 162-based stations. This list
briefly identifies each in terms of their candidacy for downloading. Tables
numbered 0–31 are described.

ADATA EQU 0 ;Analog data
Contains settings and alarm info about all channels. To download

settings properly, setting messages should be sent for each controllable
channel. If this table is downloaded directly, then a system reset must be
performed to cause the settings to be issued to the hardware. Note: This
“automatic restore of settings” at reset time can be inhibited by the setting
of option switch #6, which is on the crate utility board in 133A-based
systems, or on the front panel in 162-based IRMs. Under normal
conditions, this switch should not be set.

ADESC EQU 1 ;Analog descriptors
These records contain scale factors, names, and text for all

channels. Can be downloaded record by record. The name hash table is
automatically filled during downloading as well as following a system
reset. If the table is downloaded directly, this name inserteion is not
performed, and a system reset will be necessary to correctly populate the
name hash table.

BALRM EQU 2 ;Binary alarm status
These are binary alarm flag words and trip counts for every

binary bit. They can be downloaded, if desired. Note: Acnet does not use
binary bit-based alarms. But there may be silent bit alarms that are used
for keeping diagnostic trip counts. In Acnet, binary alarms are based upon
“combined status words.”

BDESC EQU 3 ;Binary bit titles
Every bit has a 16-character title or description in this table. It

can be downloaded anytime. Acnet doesn’t use these titles directly, but
they serve to describe the meanings of all binary status bits known to the
system, so they should be kept up-to-date.

RDATA EQU 4 ;Read Data Access Table
The Data Access Table describes as a list of instructions how to

update the local data pool each cycle. It should preferably be downloaded
all at once, as it is always “live.”

System Tables and Their Uses p. 2
These are the readings of all binary status bytes (8 binary bits per

byte) in the system. They are used as setting values to update the digital
hardware during the automatic restore at system reset time. Although one
should issue settings for each byte to download this correctly, it is
probably easier to perform a system reset.

PAGEP EQU 6 ;Page pointers
The 160-character page titles and associated page program names

are kept in this table. It can be downloaded if no page program is active.

PAGEM EQU 7 ;Page private memory
Page context is maintained in this table. It can be downloaded, but

it should also bedone only when no page program is active.

LISTP EQU 8 ;Active list pointers
This is a dynamic table of “list#s” associated with actrive data

requests. Downloading is neither necessary nor desired.

CODES EQU 9 ;Downloaded named programs
This is a directory for the memory-resident file system that is

used to house downloaded page and local applications in non-volatile
memory. This cannot be downloaded; rather, it is automatically filled as
programs are downloaded via TFTP or copied into the system using the
Download page.

CDATA EQU 10 ;Comment alarm data
These records contain alarm flags and counts for comment alarms,

such as system reset and alarms reset “events.” Usually these are marked
disabled in Acnet.

BADDR EQU 11 ;Binary byte addresses
For each binary byte there is an address that is used for accessing

the byte of data and/or controlling it. This table of addresses can be
downloaded as needed.

OUTPQ EQU 12 ;Output pointer queue
This is a dynamic table used for a token ring message queue. It

should not be downloaded.

PRNTQ EQU 13 ;Print message queue
This is a dynamic table that houses the serial port output queue.

It should not be downloaded.

System Tables and Their Uses p. 3
This table holds the list of local application instances and

associated parameter values. To download this table, first insure that all
local applications presently running, if any, are disabled. Each entry to be
downloaded must be modified to have a null static variables pointer and
the “last status” cleared to indicate inactive.

CPROQ EQU 15 ;Co-processor message queue
This table’s records identify the location and size of coprocessor

message queues located in shared memory. They are not used in Acnet
stations.

MMAPS EQU 16 ;Memory-mapped templates
Entries in this table support selective downloading into special

hardware memory boards via vertical interconnect. It is used only for D0,
which probably already has a means of downloading the needed board
templates.

Q1553 EQU 17 ;1553 controller queue ptrs
Dynamic table for D0 1553 rack monitors. Downloading

inappropriate.

DSTRM EQU 18 ;Data streams
Defines location and sizes of data streams. Entry #0 and #1 are

standard and used in all stations. #0 provides for network frame
diagnostics. #1 supports a settings log. Additional data streams may be
defined and downloaded for other purposes. Extensively used in D0 high
voltage systems. A system reset is required to initialize the related data
stream queues.

SERIQ EQU 19 ;Serial Input Queue
Dynamic queue of serial input data. Downloading inappropriate.

TBL20 EQU 20 ;spare (used by MSU?)
Undefined.

AADIB EQU 21 ;Analog alarm device info block (D0)
Analog alarm device info used in D0 downloadable by D0 utility.

BADIB EQU 22 ;Binary alarm device info block (D0)
Binary alarm device info used in D0 downloadable by D0 utility.

CADIB EQU 23 ;Comment alarm device info block (D0)
Comment alarm device info used in D0 downloadable by D0 utility.

System Tables and Their Uses p. 4
DSTAT EQU 24 ;Combined status words specifications (Acnet)

Table entries define construction of 16-bit word binary status
words. Table can be downloaded. Entries are referenced by Data Access
Table entries type $26.

TBL25 EQU 25 ;spare
Undefined.

TBL26 EQU 26 ;spare
Undefined.

IPNAT EQU 27 ;IP Node Address Table (node#s, IP addresses)
This table is a cache of IP addresses received from DNS queries

based on nade# names of the form NODE0576, for example. It can be
downloaded. The important part is the header that includes the IP address
of the DNS node and an up-to-16-character default suffix for node names
NODExxxx.

IPARP EQU 28 ;IP “ARP” Table, incl IP security table
From scratch, this Internet Protocol table’s header is automatically

initialized at reset time. Then additional info must be filled in, such as
station’s IP address, subnet mask, gateway IP address and MTU’s. A
system reset must then be performed to activate IP support.

DIAGQ EQU 29 ;Alloc,Liber diagnostic queue (optional)
Downloading inappropriate.

TRING EQU 30 ;Token Ring Network Table
Some parts of this table can be downloaded. It provides much of

the basic network, especially token ring, support.

DLOAD EQU 31 ;Download area (last word: table directory entry
cksm).

From scratch, initialized empty at system reset time.
Automatically filled by programs that are downloaded via TFTP or copied
via the Download page. Downloadingthis “table” directly is inappropriate.
Usually 192K bytes in size.

VME System Data Requests A common type of data request, then, is to
request readings of a selected group of
channels. The support for data requests is
optimized to respond to repetitive
requests for a given type of data from a
random selection of table entry identifiers.
The type of data of data is specified in a
data request by a “listype” number. This is
a small integer currently in the range 0-39.
The table entry identifier is called an
“ident.” It consists of a network node
number followed by an entry number. So,
the listype indicates the type of data
requested, and the ident specifies which
table entry to access.

Mar 15, 1989
Introduction
One of the most important services
provided by the VME system software is
support for handling requests for data.
Each VME station is able to respond to
many active data requests simultaneously.
Each request may ask for data to be
returned repetitively at rates specified in
sub-multiples of 15Hz. One-shot requests,
in which only a single response is given,
are also supported. This paper describes
how requests for data are handled by a
station on the network.

In order to take advantage of the way the
system is optimized to respond to
requests, one should specify a listype and
an array of idents for which that type of
data is being requested. When updating
the response to a request, the internal
VME software works with an array of
pointers, one pointer for each ident in the
request. The array of pointers is processed
according to code optimized to handle the
particular type of data which is accessed
using the specified listype.

VME Station Data
Data which is collected by a station is kept
in tables in memory. Most data requests
call for copies of selected data from these
tables. One of the most popular tables is
the Analog Data Table. An entry in this
table contains the most recent reading,
setting, nominal and tolerance values for
each channel known to that station. The
entries are indexed by channel number.
(A channel herein refers to a single analog
quantity known to the system in its local
database, another table of entries also
indexed by channel number.)

The listype mechanism is actually
somewhat more general than stated
above. A listype number indexes into an
internal table which contains a reference
to code to generate the internal pointers
which are used during response update, a
reference to code which processes a setting
(if allowed) for that type of data, and
parameters which specify the table and
entry offset appropriate for that listype.
But it is possible for data to be accessed
which does not come from simple table
entries. For example, data may be
requested from a serial port. In that case,
the response data consists of a word
containing the number of characters
followed by that number of characters,
limited to a maximum length as specified

Values of 16-bit readings are collected
from the hardware at 15Hz, according to
the instructions contained in the Data
Access Table. The last setting value is
recorded in the Analog Data Table upon
successful setting of the associated control
hardware, such as a D/A. The nominal
and tolerance values are specified by the
user and are used by the alarm scanning
logic. That code checks new data readings
against the nominal value within the
specified tolerance to judge whether a
channel is in a “good” state or a “bad”
state. Each time a change of state occurs,
an alarm message is sent to the network

number of lines of text is returned, where
a line ends in a carriage return code.)
Another example is a request for binary
status data. One may request such data by
using a listype which expects a list of bit
number idents. In this case, the response
consists of a single byte with the value of 0
or 1 for each bit number, according to the
current state of the status bits as found in
the Binary Data Table (the digital “analog”
of the Analog Data Table), which contains
the latest readings of the binary status data
bytes.

Data Server request to any VME station.
Such a request is treated internally just
like a locally-generated request. It may
consist of idents of any set of stations. The
Data Server Task will collect the response
fragments that are returned to its node
and deliver them to the original
requesting node. It is recommended for
network efficiency reasons that the station
chosen to be the serving station be one of
the stations which is mentioned in the
request, perhaps the node specified in
first ident mentioned in the request.
A fourth source for data requests is via
Serial Server. In this case, the request is
sent from a requesting computer to the
serial input port of a VME station.
Serial Server then makes the request
locally. When the response fragments
collected and ordered, a serial response is
transmitted back out the serial port to the
requesting computer.

Sources of Data Requests
VME stations can receive requests for data
from several sources. Each station can
support a local console application which
may make requests by calling system
procedures. The simplest case would
request a list of data using only idents of
the local node. The second case occurs
when a local request includes idents
which indicate a node number different
from that of the local station. The local
station software then issues the request to
the network. If the array of idents includes
idents from more than one “other” node,
then the request is broadcast in order to
reduce network traffic, at the expense of
requiring all stations, not just those
identified in the request, to examine the
request. So, a network node may receive a
request for data from another station who
made the request. In this case, the
station(s) examine the received request for
idents which match their own station
number, and they gear themselves up to
respond only to their own part of the
request. The requesting VME station,
then, has the job of combining these
“response fragments” into a single
response for the requesting application

Acnet Data Requests/Settings
System Implementation

Mar 16, 1990

Introduction
The message formats for Acnet data requests/settings is described in the

Acnet Design Note 22.28. It uses the Acnet header designed by Charlie Briegel to
support generalized task-task communications across a network. The Network
Layer software in the VME Local Stations supports these Acnet header-based
messages. This note describes the implementation of the support for Acnet Data
Services data acquisition and setting messages.

Message flow
When a request or setting message is received, it is directed to a well-known

taskname RETDAT for requests and SETDAT for settings. (These 6-character
network task names are encoded in the “Radix-50” form used by PDP-11
computers.) At initialization, the Acnet Request Task creates a message queue
(called ACRQ) that is used to receive Acnet header-based messages directed to the
taskname RETDAT or to the taskname SETDAT. NetCnct registers both tasknames
to the Network Layer. (By directing both message types to the same queue,
processing of the messages in original network order is assured. One can issue a
setting command and immediately issue a request to read back the setting value
and still be confident of obtaining the new setting, assuming a valid setting.)

Function NetCnct (taskName, queueId, eventMask, VAR taskId);

The eventMask is left zero, as the Request Task will simply wait on the message
queue rather than wait on an event. The Request Task then enters an infinite loop
that calls NetCheck to wait for a message and, upon receiving one, processes it.

Function NetCheck (taskId, timeOut, VAR msgRef);

When the function returns with valid status, the message type is checked as
found in the first word of the Acnet header. If it is a USM (unsolicited message)
with the CAN bit set that was directed to RETDAT, the request identified by the
message id is cancelled. If it is a USM that was directed to SETDAT, the setting
message is processed immediately with no acknowledgment message.

If the message type is a request, the message following the header is checked. If it
is a setting, it is processed immediately, and an acknowledgment is returned in
the form of a status-only reply message (Acnet header only). If it is a request for
data, then 3 message blocks are allocated for support of the new request. (If the
request specifies an existing active message id, then the existing request is
cancelled.) The basic request block (type#12) houses the various parameters
needed to monitor the request activity. Two pointers are included in that block

Acnet Data Requests/Settings Mar 16, 1990 page 2
and the answers block (type#9).

The basic Acnet request block (type #12) contains the array of device request
blocks (DRB’s) and the frequency time descriptor (FTD).

MBlkSize MBlkType=12

ReqAHdr ReqAHdr#by

LinkNext

Update Cntr

$00

ReqAHdr=$20

$08

$10

$18 — —

Ptr to internal ptrs block (#14) Ptr to answers block (#9)

Request Request#by

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

—

Acnet header

FTD cntr mxAnsLng #rPkts FTD

#bytes dOffset
device
request block
(4 words)

…

Request=$38

— —

$28

$30

$40

$48 additional DRB's

readOff postPOff

The Internal Ptrs block (type #14) contains the array of internal ptrs that are used
to update the request (build the answers) efficiently.

pBlkSize ptrsOff=8 nPtrs pBlkType

intPtr1ptrsOff

$00

intPtr2

…

Acnet Data Requests/Settings Mar 16, 1990 page 3
The answers block (type #9) is an Acnet message block of the form used by the
Network Layer software when the answers are to be returned to the requesting
node/task. It also includes a pointer to the parent request block (type #12) for
use by QMonitor for one-shot requests that need automatic cancellation.

MBlkSize MBlkType=9

HdrOff HdrLng

$00

$08

$10

$18
dest
Node netQFlag

FmtOff FmtLng

flags status destNodeLan srcNodeLan

destTaskName

msgLng

srcTaskId msgId

—

Ptr to xmitStat word

destNodeOff #bytes-2

MsgOff MsgLng XtrOff XtrLng

$30

Acnet header

$28

Ptr to request block (type#12)taskId —$20

$38 — —

$40 …answer data …

…

status

…answer datastatus …

additional answer packets

After the request support blocks have been filled, the basic request block is
inserted into the chain of active data requests using INSCHAIN. It is inserted at a
position adjacent to another request block made by the same node, if any, in
order to increase the likelihood of combining the answer responses of multiple
requests into the same network frames. Then the Update Task is triggered to
update the request and build the first set of answers immediately.

The request message is processed as it resides in the network frame input buffer
DMA’d into memory by the chipset. This processing includes “compiling” the
request into the DRB’s and the internal ptrs array for later update processing.
The message count word in the network frame buffer is decremented to signal to

Acnet Data Requests/Settings Mar 16, 1990 page 4
the network that the request message space is now free for future use. Note that
initializing the request as it resides in the network buffer (instead of using
NetRecv to copy it into the caller’s buffer) saves copying the ident arrays in the
request, at the expense of the additional responsibility of decrementing the
message count word when finished with the request message.

Updating requests
The Update Task scans through all active requests each cycle to update any

which are due for processing. It checks for this new request block type (#12) and
builds the answers accordingly. The read-type routines are called for each listype
using the array of internal pointers to build the answer data.

When the Update Task has built answers that are to be returned to the requester,
it invokes the NetQueue routine to do it. Just before that, however, it calls
NetXChk to flush any existing queued messages that are going to a different
node or use a different protocol type (different SAP) to the network chipset. This
is to ensure prompt delivery of responses to different nodes and yet combine
answer messages directed to the same node into the same frame for greater
network efficiency.

Function NetXChk (newNode, newType): Integer;

Function NetQueue (taskId, VAR msgBlk, VAR xmitStat): Integer;

The Update Task flushes all queued messages to the network after it has
processed all active requests each 15 Hz cycle.

Acnet Settings
Processing setting messages, as compared with data requests, is greatly

simplified because it is all done immediately and no dynamic data structures
need be prepared for later update processing. The destination task name of
SETDAT indicates that the message is a setting.

The many set-type routines have been enhanced so that they now return error
codes whenever they encounter errors. (Previously, the setting was simply
ignored.) This error response word is used in the setting acknowledgment
message. A zero status indicates no detected error in performing the setting. This
acknowledgment is returned only if the setting message type is a request. If the
setting message is a USM, no acknowledgment is returned.

Acnet Request Module Road Map
The organization of the routines in the ACREQ module is as follows, where an

asterisk denotes a declared entry point:

Acnet Data Requests/Settings Mar 16, 1990 page 5
*ACREQ

CANCEL REQUEST

ACDELETE

DOPTRS DOANSW

*ACDELCHK

*ACUPDNEW *ACUPDCHK

ACUPDATE

Acnet Data
Request/Setting
Task

Update Task

QMonitor Task

SETTING

SETACK

ADJDATA
SETLOCAL

(in SETDATA module)

PPANABL PPESTATPPDGABL PPBSTAT

ADJABLK

MDANABL MDDGABL MDBSTAT

MDAFLGS

The upper collection of routines comprise the Acnet Data Request Task, which
waits for a message directed to the destination taskname RETDAT or SETDAT and
processes it. For a request message, the CANCEL routine searches the active list
chain for a match against the message id (“list#”), the requesting node and
source task id. If it finds a match, it calls ACDELETE to cancel that active request.
The REQUEST is the bulk of the code which prepares the request block, internal
pointers block and answers block for later processing by the Update Task. It uses
several other routines to help break that job down into more manageable pieces.

For a setting message, the setting action is performed immediately. The system
routine SETLOCAL is called to process each packet. An error return aborts the
processing of any remaining settings in the message, and SETACK is invoked to
deliver the setting acknowledgment status-only reply message.

The middle section is the ACDELCHK routine which is called by the QMonitor
Task when it has detected the completion of transmission of an Acnet-type
message (block type#9) with bit#6 and bit#5 of the NetQFlg word set in the
block, indicating that the block is to be retained for re-use and that it is a Acnet
protocol request as opposed to a DZero protocol request. It checks for the case of
a one-shot Acnet data request that should be cancelled. So QMonitor has to
recognize the type#9 message and be aware of the NetQFlg word. It also looks
for the case of the type#$F9 and frees the memory of that block. (A type#$F9

Acnet Data Requests/Settings Mar 16, 1990 page 6
block is an altered type#9 block no longer needed for holding an Acnet answer
response but could not be freed when cancelling the Acnet request because bit#7
of the NetQFlg was set indicating that the block was queued for transmission to
the network.)

The last section includes two entry points that are called by the Update Task to
process type#12 requests during its traversal of the chain of active requests.
ACUPDNEW updates the request only if it has never been updated before, whereas
ACUPDCHK examines the FTD counter and updates the request only if it is due.
ACUPDATE shepherds the actual updating of the request and queues an answer
response to the network.

Error reporting for requests
A number of potential errors are detected when processing an Acnet data

request message. For most of these, a response is returned to the requester
consisting of a status-only reply, which includes only the Acnet header. Current
error codes are as follows:

-32 spare
-33 invalid message size
-34 spare
-35 invalid #request packets
-36 dynamic memory unavailable
-37 invalid listype#
-38 invalid identype (error in listype table)
-39 invalid ident length for listype#
-40 invalid #bytes requested per ident
-41 invalid total #idents this request
-42 size of answers too large
-43 size of answers > max length given
-44 nonzero data offset not supported in request packet
-45 nonzero data offset not supported in setting packet
-46 invalid #setting packets
-47 invalid read routine type# (error in listype table)
-48 node# does not match this system’s node#
-49 invalid destination task name

In addition to the response to the requester, these errors are recorded in the Local
Station in local variables of the Acnet Request Task. They can be inspected for
diagnostic value (with suitable instruction). For each error, a data word is
recorded for the last error of that type followed by a count word of the number of
errors of that type that have occurred since the station was reset.

Acnet Data Requests/Settings Mar 16, 1990 page 7
-21 destination task not connected to network (RETDAT or SETDAT)

This means that the 4-byte destination task name in the Acnet header was not
recognized by the node that received it. For systems which have Network Layer
support but have not yet been updated with the Acnet data request software, this
will certainly result.

Setting acknowledgment error codes
The following list of errors can occur in response to a data setting message:

0 No error. Setting successful.
-65 System table not defined for this listype.
-66 Entry# (chan#, bit#, etc) out of range.
-67 Odd #bytes of data
-68 Bus error
-69 #bytes too small
-70 #bytes too large
-71 Invalid #bytes
-72 Set-type out of range (error in listype table)
-73 Settings not allowed for this listype
-74 Analog control type# out of range (error in analog descriptor)
-75 Invalid binary byte address in BADDR table
-76 Invalid mpx channel# (Linac D/A hardware)
-77 F3 scale factor out of range (motor #steps processing)
-78 No CPROQ table or co-proc# out of range
-79 Hardware D/A board address odd
-80 Bit# index out of range (associated bit control via channel)
-81 Bit# out of range for this system’s database
-82 Digital Control Delay table full (for software-formed pulses)
-83 Digital control type# out of range 1–15
-84 Co-processor command queue unavailable
-85 Co-processor invalid queue header
-86 Queue full or unavailable
-87 Dynamic memory allocation failed
-88 Error status from 1553 controller
-89 Invalid 1553 command for one word output
-90 Invalid 1553 Command Block address (must be multiple of 16)
-91 Invalid 1553 order code in first word of Command Block
-92 1553 interrupts not working
-93 Cannot initialize 1553 command queue
-94 No Q1553 table of pointers to 1553 controller queues
-95 Invalid Motor table
-96 Motor table full
-97 Invalid 9513 timing channel pair
-98 Timing event# out of range.
-99 Invalid data value.

Acnet Data Requests/Settings Mar 16, 1990 page 8
-100 Invalid #bytes of text in Comment alarm control
-101 No DSTRM table of Data Stream queue pointers
-102 Data Stream queue type# out of range
-103 Data Stream queue not initialized
-104 No MMAPS table of memory-mapped board templates
-105 Invalid MMAPS table header
-106 Invalid MMAPS table entry size
-107 Invalid board# for MMAPS table
-108 Invalid directory entry in MMAPS table
-109 End of MMAPS table reached during template processing
-110 Invalid MMAPS command type code
-111 Invalid MMAPS loop params
-112 Invalid MMAPS nested loop
-113 spare
-114 Invalid listype#
-115 Invalid ident type# (error in listype table)
-116 Invalid ident length for this listype
-117 Little console settings switch disabled
-118 Little console external settings switch disabled
-119 Data Server setting not implemented
-120 Invalid listype for this Acnet property

Acnet Data Requests/Settings Mar 16, 1990 page 9
Data format conversions

Special considerations of the Acnet protocol require support of several
standard data formats. Logic is included that supports the following standard
record structures:

ANALBL Analog Alarm Block
DGALBL Digital Alarm Block
BSTATS Basic Status
BCNTRL Basic Control
ESTATS Extended Status

These standard data formats are as follows:

ABStat Nominal Tolerance

tries
now

tries
needed

Evt#1
=00

Evt#2
=00 #trips

— —

—

—

Analog Alarm Block

Digital Alarm Block

ABStat Nominal=0/1 —

—

Mask=1

tries
now

tries
needed

#trips

— —

Basic Status

Basic Control

0 0 0 0 0 0 0 0 1 - I 1 B A0 0

0 - - - - - 1 0 0 - I 1 B A0 0

I 2 bm by 2c B - - - - - - - -A N

I 2 bm by 2c B - - - - - - - -A - Analog alarm flags

Digital alarm flags

0/1

0/1

—

—

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

DE LE EV HI LO K2 K1 K0 AD Q1 Q0 — AI AB GB BP

Evt#1
=00

Evt#2
=00

(Bytes swapped for Vax)

(Special adjustment for Bit# setting)

The alarm blocks are the most complex structure to support. The flag word must
be edited to conform to the Acnet standard form in response to a data request.
And it must be edited to the Local Station format in response to a setting. The

Acnet Data Requests/Settings Mar 16, 1990 page 10
other fields are similarly edited. The tries needed byte may be one or two,
according to the 2x bit in the analog or binary alarm flags. The #trips word is
returned as extra info in the alarm block. Event-related alarms are not supported.

A special adjustment must be made to accommodate data requests of less than 6
bytes for an analog alarm block. When the read-type routine is invoked to update
the answers to such a request, the #bytes requested must be set to at least 6, or
the read-type routine will not return the analog alarm flags word that must be
edited to make up the ABStat word in the reply. This adjustment also requires
that 6 extra bytes be allocated in the answers block (type#9) in order to assure
that the extra bytes requested of the read routine cannot be written beyond the
end of the block.

For the case of the Basic Status property, the bytes of answers must be swapped
to conform to the byte order of the DEC machines. This is also true of some forms
of Basic Control, but the data sent with listype #21 (digital I/O via Bit#) is
considered a word, where the hi byte is the digital control type# and the lo byte
is the pulse delay (when used). So in this case, the bytes should not be swapped.

Limitations of present implementation
Features not supported in the initial version of Acnet request handling are the

following:

SSDR-related requests
Event-style FTD’s
Data offset

It is not intended to support data requests of the “Data Server” type for the Acnet
protocol. Idents in a request are ignored if they do not include the node# of the
local station receiving the request in the first word of the ident. This means that
one could send the same request to a group of nodes using the functional group
multicast form of network addressing, and each node receiving the request
would select out its own idents for answer response. (Obviously the requesting
node would need to scan the original request in order to be able to match the
answers with the questions.) Currently, however, the Acnet header-based
protocols do not permit sending request messages to a group of nodes.

Comparison with “classic” protocol
The Acnet RETDAT/SETDAT protocol for data requests/settings is a very

flexible protocol that serves multiple front end computers whose internal
software may be organized quite differently. The SSDN component of the
request/setting packets is the key that makes it work. The coding of the 8-byte
SSDN structure can be designed for the needs of each front end; neither the

Acnet Data Requests/Settings Mar 16, 1990 page 11
correctly entered into the central database.

The “classic” protocol that has been used by the Local Station processors since
1982 is designed to support that particular front end type. The concept of
characterizing data requests in terms of arrays of idents to be processed in the
same manner is used to optimize request update efficiency. Updating an array of
channels with analog readings, for example, is distilled down to a 3 instruction
loop with the loop count being the number of channels in the array.

This implementation of the RETDAT/SETDAT protocols does not rearrange the
request into one that can be processed optimally. It can be enhanced at a later
date if the extra effort is deemed to be worth the increase in efficiency.

Acnet on UDP /IP
Local Station Implementation

Sat, Jan 23, 1993

General plan
Acnet over UDP/IP is implemented by assigning node#s in the range 0900–09FF to
signify the use of UDP rather than raw network communications. Each Local Station
front end, since it supports both raw and UDP network transactions, will have two
node#s assigned: the raw node# (0614 for example) and a UDP value (0973). These UDP

node#s are assigned to each node as needed. Currently, assignments for the 71 installed
Local Stations are in the range 0965–09AB. If a Vax console, or any other host that sup
ports this scheme, wants to send a message to a 09xx node, it should use UDP encap su
lation around the Acnet header-based message to be sent, and it should indicate its own
UDP node# in the source node# word of the Acnet header. A database entry for a device
that is sourced from a front end that can only speak UDP must specify a 09xx value in
the source node# field for that device. Vax DPM software will then use UDP to commu
ni cate the request to that front end, using a destination port# of 6801 decimal.

Local Station implementation
Support has been added to the Local Station software for an alternate UDP node#, and
UDP-based Acnet messages sent from a Local Station will exhibit the 09xx value in the
source node# word of the Acnet header, as described above. Each Local Station knows
its own alternate UDP node#, but it does not know that of other Local Stations. In addi
tion to Acnet support, Classic protocol support has also been extended to use UDP when
the target node# is in the UDP range. To derive the IP address for a target node, a “trunk
9” table is used that is simply an array of IP addresses indexed by the xx value from the
09xx node#. Entries are automatically filled by a UDP Acnet message received from a
node that specifies 09xx as its source address. It is also filled by any UDP Classic or
Acnet message sent from a local station that targets a given 09xx node#. This IP address
array is 256 longwords in length. It is currently stored at address $10FA00 in non-
volatile memory. The local 09xx value stored at $10507E in the token ring table is
sampled at reset time as the local UDP node# for that station.

Server function
Special considerations are needed for the Local Stations because of their built-in server
functionality. A request message sent directly to a Local Station that includes in its list of
idents references to nodes other than the receiving node will receive server support. This
means that station will accept responsibility for collecting all the requested data from
the other nodes for inclusion in its response to the requester. (Note that this fea ture is
used for all Linac devices accessed via the Acnet RETDAT system.) To assist in this
implementation, a convention is used that requires that the second word of the SSDN

four-word record in the Acnet central database device entries also be used for the source
node# field for that device. This is necessary so that a serving node can anticipate which
nodes will respond to its forwarded request, which is sent via multicast network
addressing in the case that more than one “real” source nodes are involved in the

Acnet on UDP/IP Sat, Jan 23, 1993 p. 2
will have the UDP node# in the source node# of the Acnet header. This is necessary
because the serving node must find a match against the node#s in the SSDNs of the
original request in order to know how to distribute the reply data into the final reply
message that will be returned to the requester.

From the above description of the server logic that interprets contributing node replies,
it can be seen that this logic will not work in the case that the list of SSDNs in a request
includes some raw node#s and some UDP node#s. This “mixed bag” request is not sup
ported. For the case of RETDAT protocol, this situation will be prevented if a simple
convention is followed for database entries. For devices from front ends that must be
accessed via UDP, the UDP node# must be used both in the SSDN and in the source node#
field of the database entry. Thus, Vax DPM will not form a “mixed bag” request.

One node# enough
To help workstation access to data from Local Station nodes, it is desirable to allow
idents that use the raw node# to be accessible via UDP, even when the front end
supports both raw and UDP. In this case, UDP is used because the requesting node has no
other option, and the devices given in the database are identified as being sourced from
raw node#s. To support this, UDP node#s that match the receiving node’s UDP node#
are converted to raw node#s when received in a request message, except in the case of
the RETDAT protocol request that requires server support. The reason for this exception
is that local node references are not separated out for Acnet protocols, as compared with
the Classic protocol case. The local node acts as any contributing node.

Installation
The procedure for installation of this new UDP node# support is simple. Before resetting
with the new system software installed, install the local node’s UDP node# in the non-
volatile memory address above. The other part is the IP address table. It can be copied
from another Local Station, or it may be downloaded via the ACNAUX function called
IPATAB (code=$11) from a Vax. (At this writing, such functionality has not been inclu
ded in the Local Station version of ACNAUX, but it can be easily added with logic analo
gous to that used to download the physical address table used for trunk zero nodes.)

 EACNET Support for Local Stations
Ethernet console access to token ring front ends

Nov 9, 1991

New accelerator consoles cannot connect to token ring, which is the network of
choice for the control system front ends, due to hardware limitations. As a stop-
gap measure, so-called DACNET server nodes, which are more expensive Vaxes
that do connect to token ring, have been used to bridge this gap. There are now
commercially available bridges that offer much better performance, and such a
bridge will be used instead of DACNET servers. Special accommodations are
needed for front ends to support the new EACNET, the term used to refer to
ethernet-based Acnet.

Console nodes use ethernet addresses in the form AA-00-04-00-nn-E8. The nn
is a node number on “trunk 8”. Acnet headers include this source node# as 08nn,
where here the trunk is shown in the hi byte. For a request message, the source
node is found in the 4th word, whereas for a reply message it is in the 3rd word.

When the CrossComm bridge is used, the ethernet source address is altered by
having each byte bit-reversed. So a front end on token ring will see ethernet
addresses of the form 55-00-20-00-uu-17, where uu represents the bit-
reversed version of nn above. In the future, it may be necessary to use ethernet
addresses of a different form, in which uu is not the bit-reversed version of nn, or
in which the last byte of E8 (or 17) is changed to some other value. The value of
the first 4 bytes, however, is not expected to change anytime soon.

To support the required address translation, front ends should keep a table of
two-byte values, indexed by nn, which can be used to furnish the last two bytes
of a destination ethernet address. The table can be built dynamically, or it can be
downloaded from OPER using a suitable ACNAUX protocol variant.

To build this lookup table dynamically, a front end should recognize a frame
coming from an ethernet node by its source address field. If it looks like the form
55-00-20-00-uu-xx, and targets a node# of 08nn, it can be assumed that it
comes from an ethernet node through the bridge. Record the uu-xx bytes in the
table indexed by nn. When there is a reply to a node whose node number is
08nn, do a table lookup to get the two bytes to append to the constant 55-00-
20-00 to derive the destination network address. Such an address will pass
through the bridge to the corresponding ethernet node.

There is a caveat regarding frame size, however. Ethernet frames are limited in
length to 1500 bytes. The token ring limit is about 4K bytes. If a frame larger than
the ethernet limit is to be sent to a console on ethernet, the front end must send it
to a special “packeter” node on token ring, which will in turn forward the it to
the ethernet node in packets of less than 1500 bytes. Likewise, when an ethernet

EACNET Support Nov 9, 1991 page 2
this packeter node, which assembles the packets together and sends the larger
frame onto the token ring destination node. In this case, the front end will receive
a frame whose source address is that of the packeter node, not the ethernet node.

A large request message might be sent from a console that results in a short reply
message. In this case, the ethernet address may not be seen by the front end, so it
cannot reply through the bridge. The solution in this case might be to send the
reply through the packeter node anyway. Of course, a previous short frame
received from that same console may have resulted in placing a proper entry in
the table referred to above, so that this case would not happen. Another option
would be to form a default ethernet address from the node#.

Local station front ends automatically pack multiple messages that are destined
for the same node and do not exceed the frame size limits into common frames, if
they are queued to be sent at the same time. The software is organized to build
reply frames at the same time so as to increase the likelihood of this occurrence.
This is done to reduce the number of frames transmitted, which can pay big
dividends for the receiver in terms of reduced network handling soft ware
overhead. Vax consoles should expect to receive frames with multiple messages.

This logic of combining multiple messages into common frames brings up
another wrinkle in providing support for EACNET in the front ends. Messages
destined for node 08nn cannot be combined if some are larger than the ether net
limit and some are smaller, since the real destination node is different. This is
easily handled by replacing the target node# of large messages with the packeter
node#, without altering the destination node# in the acnet header itself.

The table referred to above in OPER can be obtained by sending a request mes
sage using the ACNAUX typecode word of 000E. The reply consists of 256 words
(512 bytes) indexed by nn, where the 00 entry is unused. At this writing, the table
contents are 0000, E801, E802,… , E84F, and the rest are 0000. The table should
change only rarely, and it can be downloaded at that time if the front end sup
ports the typecode (000F?) used for downloading this table.

Implementation in the local station software

NetLayer module

In the NetQueue routine, the replacement of the target node# with the packeter
node# is done for a message larger than 1496 bytes.

NetInt module

EACNET Support Nov 9, 1991 page 3
manually initialized from scratch, which occurs if the TRING table is destroyed.
(Resetting the local station does not alter this non-volatile memory table.) Each
table entry includes the six-byte network address and a two-byte diagnostic
count of the number of frames sent since the last time a frame was received from
that trunk 8 node.

The NetRInt token ring receive interrupt routine only allows source network
addresses of the form 40020000xxxx and 55002000xxxx. This insures that a reply
to a request can be delivered.

The NetSendF routine prepares the token ring destination address. If the target
node# is in the trunk 8 range, the network address is taken from the Node
Address Table entry indexed by the node# low byte. In the case that the entry is
empty, a default address is built of the form 55002000uu17, where uu is the bit-
reversed value of the node# low byte.

ANet module

The Acnet Task analyzes a frame received via SAP $68 and dispatches the acnet
header-based messages it contains according to the destination task. If the source
network address in the frame header is of the form 55002000uu17, and the
source node# (found in the acnet header of the first message) is in the trunk 8
range, the six-byte source address is recorded in the Node Address Table entry
indexed by the low byte of the source node#, and the entry’s count is cleared.

In this first implementation, there is no support for downloading the OPER-based
table referred to above, although it could be added in the future if the dynami
cally-populating logic proves inadequate.

 FTPMAN Implementation Notes
for Linac Local Stations

May 1, 1991

Accelerator data requests are supported by network tasks known by the RAD50
names RETDAT and SETDAT. Data requests for plotting, however, are supported
by another network task called FTPMAN. Console plotting of Linac data at 15 Hz
is not possible without support for FTPMAN. This note sketches what is required
to provide this support for the Linac local stations, which act as front ends to the
accelerator Vax consoles. These notes are derived from Jim Smedinghoff’s
ACNET Design Note No. 49.4 dated March 29, 1988.

Two types of plotting protocols are supported via FTPMAN, continuous plots and
snapshot plots. Plotting 15 Hz data only requires the continuous type.

Activation of plotting requests are done in two stages. The first requests Plot
Timing Information, and the second requests the plot data. The first word of the
request message is a typecode which distinguishes the request types.

TQTC

TQNDEV

PI/DI

SSDN

TypeCode=1

#devices

Timing
request
Packet #1

etc.

status

Timng
Info
Reply #1

status

FTP class code

—

etc.

The Linac 15 Hz class code is 5. The #devices in the request is the number of
timing request packets. Nothing needs to be remembered about this request for
timing info.

To initialize a continuous plot, the protocol looks as follows:

FTPMAN Implementation Notes May 1, 1991 page 2

Request Continuous Plot

CQTC

Data
pt #1

SSDN

TypeCode=2

#devices

Timing
request
Packet #1

etc.

status

Data
Reply
Packet
#1

status

etc.

CQNDEV

CQTSK
Requesting
task name (RAD50)

CQRETP

CQBSIZ

CQEVNT

CQSTRT

CQSTOP

CQPSMP

CQPDPI

CQPSDN

Period in
10 µs units

First reply

status

reply type=1

Further replies

status

—

—

reply type=2

CRPPTR

CRPNPT

CRPSTS

etc.

device #1

device #2

time stamp

etc.

status

offset

#data

data value

Return period 1–5 cycles

Max return buffer (words)

Data return reference

Data return start cycle

Data return stop cycle

The requesting task name is used to automatically cancel any previously active
FTPMAN requests from a given task in a given node. Only one request can be
outstanding from a requesting task. The return period can be from one to five 15
Hz cycles, resulting in a frequency of 15 Hz to 3 Hz, respectively. The maximum
data return buffer size is influenced by the requester’s ability to keep up with the
returned data frames. The data return reference word selects clock events to use
for sampling the data to be plotted. It will likely be 0, indicating no events
(always return data). The start and stop cycle counts require the ability of the
front end for noticing clock event #2. The time stamps, in 100 µ s units, also
require this ability.

 FTPMAN Design for Local Stations
Implementation considerations

Oct 24, 1991

The Fast Time Plot Manager has been implemented for the Local Stations as part
of the Linac controls upgrade. It is a “local appli cation” to keep from placing the
code into the system itself and to facilitate writing it in a high level language. For
optimal integration with the local station system code, however, some special
accommodations were added to the system. These notes describe the relevant
considerations and the solution implemented.

FTPMAN is a data request protocol. The local stations already supported three
data request protocols (Classic, D0 and RETDAT), so this is the fourth. For the new
Linac, devices will be entered into the central database as having a common
source node—the Server Node ($0601). Because fast time plots will be made of
readings or settings of the same devices normally entered on a parameter page,
FTPMAN protocol support must include server support, which is automatically
provided when an FTPMAN request is received that includes devices from other
nodes. The server node then forwards the request to the “real” target nodes
(using group addressing if more than one other node is men tioned). These nodes
recog nize that the request thus received need not be given server support
because either all devices in the request are local, or the request was group
addressed. The server node receives the replies and builds its reply in keeping
with the order of the devices given in the original request. It replies to the
requesting node according to the period specified in the original request.

For the RETDAT protocol, support consists of two parts. For non-server requests,
the Accelerator Task receives network messages directed to RETDAT. A request is
initialized and the first reply issued right away. Subsequent replies are issued at
Update Task time early in the 15 Hz cycle. For server requests, the Accelerator
Task receives the request directed to RETDAT, and it queues the request again to
the network either to a single node or to a group address, depending on how
many different non-local nodes are represented in the request message. First-
time replies from the contributing nodes are sent right away. In turn, the server
node’s first reply is sent as soon as these are received. After the reply, during
Server Task processing late in the cycle, all accumulated server replies which are
due are sent to the requesting nodes.

In order for the Update Task to build non-server replies, or for the Server Task to
send out its replies, a linked list of active requests is scanned. All non-server
requests and all server requests are in the same linked list. The Update Task only
reviews non-server requests, and the Server Task only checks for server requests.
In order to support FTPMAN in a manner that integrates well into the system,
such requests must get similar treatment.

FTPMAN Design for Local Stations Oct 24, 1991 page 2
linked list of active requests is the key to providing optimal assembly of network
messages into common network frames. The linked list is main tained in an order
which is sorted according to requesting node. Therefore, the answer messages
generated during Update Task and Server Task pro cessing are queued in an
order that is compatible with the network trans mit ting logic, which combines
consecutive messages destined for the same desti nation node (and using the same
802.2 SAP#) which can fit in a maxi mum size frame.

As a local application, FTPMAN would not, until now, have easy access to such
support. Each local application is called as a procedure by the Update Task early
in the cycle. But to provide server support, it needs to be called at Server Task
time as well in order to deliver server answers at that time. It cannot wait until
the Update Task time in the next cycle, because at that time, non-server replies
are being returned that may contribute to building server replies.

Generic request protocol support
From analysis of the data request support already completed for both the D0

and accelerator request protocols, there are only a few hooks into the rest of the
system needed to provide support for any acnet-header-based request protocol.

The protocol package must be invoked by network messages that are received.
This has been done until now by supplying a new task that waits for a network
message using the NetCheck routine that is part of the network layer. As soon as
the Acnet Task processes the message, it is placed into a message queue for that
task, which was specified in the task’s original call to NetCnct, on which the task
waits via NetCheck. For local appli cations, which are not tasks, there is only a
procedure call interface, so this method will not work. The Update Task calls
each local appli cation during data access table processing once per 15 Hz cycle.
The following is the new scheme for calling the local application in response to a
received message from the network.

The Accelerator Task already waits on a message queue that receives all RETDAT

and SETDAT requests, delivered by the Acnet Task. It uses a common message
queue to insure that requests and settings are not processed out of sequence. The
new scheme expands on this by permitting a local application to request that an
additional protocol also be received into this same message queue. When the
Accelerator Task finds a message which is destined for neither RETDAT nor
SETDAT, it searches a new protocol table for a matching entry that contains the
protocol’s destination task name for requests, such as FTPMAN. From that
matching entry, it obtains a pointer to a local application’s LATBL entry, which is
used to invoke the local application, indicating to it that a network message was
received, allowing the local application access its own static variables and other
parameters. In order to pass a reference to the received message, a pointer to the

FTPMAN Design for Local Stations Oct 24, 1991 page 3
the message, it returns to the Accelerator Task, which checks the queue for any
more messages.

In addition to providing a connection so that a local application can be notified of
network messages directed to it, hooks are also provided that allow it to fulfill
requests during Update Task and Server Task processing.

When the Update Task scans the chain of active data requests, it calls a routine to
process each one. That routine is given only a pointer to the request block used
for that protocol. The Update Task keys on the request memory block type# in
order to know what routine to call. It does this for two cases. For newly-received
non-server requests, there is an attempt to make the first reply right away. The
others will follow according to their request periods. For the accelerator protocol,
for example, these routines are called ACUDPNEW and ACUPDCHK.

The Server Task, running late in the cycle, makes a similar scan of the active
request chain to decide what routine to call for updating a server request. It also
keys on the request block type#. It is necessary to distinguish whether the call to
update is for the non-server case from Update or the server case from Server.

When the QMonitor Task determines that an acnet-header message has been
completely transmitted, and the optional transmit status has been delivered to
the user’s variable, it calls a routine based upon the NETQFLG word in the
message block. If bit#6 is set in the hi byte of that word, then the pointer to the
parent request block, which is at a fixed location within the reply block message
structure, is used to obtain the request block type# that, via a search of the
protocol table, makes it possible to invoke the update procedure that is part of
the local application but separately called. The arguments are a call type# and a
pointer to the request block.

One more piece of generic information about a new protocol that is needed is a
means of determining the destination node for a reply to a protocol’s request.
The INSCHAIN routine uses it when it inserts a request into the active request
chain, which as noted before, is maintained in requesting node order.

The protocol table entry that is registered by a local application to satisfy the
above hooks includes:

Request block type#
Offset to requesting node in request block
Ptr to handler which can be called by Update, Server, or QMonitor
Network task name (such as FTPMAN)
Ptr to LATBL entry that specifies parameters for calling LA.

FTPMAN Design for Local Stations Oct 24, 1991 page 4
CallType= (delChk, updNew, updNServ, updServ);

PROCEDURE Handler(call: CallType; VAR rBlk: ReqBlock);

Here rBlk is the allocated request block of the type# in the protocol table.

The set of routines for managing the protocol table, found in the OPENPRO

module of the system code, are as follows:

PROCEDURE InitPro; { Initialize protocol table at reset time }

FUNCTION OpenPro(mBType: Integer; rNOff: Integer; Handler: ProcPtr;

 taskName: Longint; LAEntry: ParamPtr): Integer;

 { Place new entry into protocol table }

PROCEDURE ClosePro(mBType: Integer); { Remove entry from table}

FUNCTION HandlerPro(mBType: Integer): ProcPtr; { Get Handler

address}

FUNCTION RNodePro(mBType: Integer); Integer; { Get requesting node }

FUNCTION LAEntPro(taskName: Longint); LAEntPtr; { Get LATBL entry

ptr}

FTPMAN Design for Local Stations Oct 24, 1991 page 5

Details
The Update Task calls local application FTPM during Data Access Table

processing. During the “init” call, static memory is allocated and initialized. FTPM

gets the ACRQ message queue id via the Attach_X call to pSOS. It calls NetCnct
to cause messages for FTPMAN to be directed to the same queue waited on by the
Accelerator Task. FTPM also installs an entry in the protocol table, providing both
a handler (for fulfilling requests and checking for cancelling one-shot requests)
and the ptr to the parameters area in the LATBL entry. The handler accepts two
arguments: a call type# and a ptr to the request block as found in the active
request chain and as described above.

After initialization, the calls to FTPM from the Update Task every cycle may not
be useful. However, in order to cancel one-shot requests, it may be convenient to
mark the request block to be cancelled by the cycle call to the LA. This is because
cancellation may require access to the static variables of the LA, and they are not
accessible from the update procedure, although one could consider including a
pointer to the static variables area for that purpose in the request block.

Upon termination, if the LA is disabled, the protocol table entry must be cleared
using ClosePro, and NetDcnt must be called to stop queuing further messages
into the ACRQ message queue. Finally, the static variables area must be released.

When a network message is received by the Accelerator Task via the ACRQ

message queue, and it is neither RETDAT nor SETDAT, the protocol table is
scanned for a match on FTPMAN. From the matching entry is obtained the ptr to
the LATBL entry which is all that is needed to invoke FTPM. By placing into the
parameters area a ptr to the message queue contents just read, FTPM can find the
network message and process it in the network frame buffer.

The Update Task, when following the linked list of active requests, calls the
handler found in the protocol table entry for the request block type# encoun
tered. The handler updates the non-server request, and it should queue an
answer message to the network if due. Later in the cycle, the Server Task also
follows the active request chain and calls the handler to update and deliver any
server-type requests that are due. When the QMonitor Task runs and finds that
an Acnet header-based message has just been transmitted, it also calls the
handler to check for automatic cancellation of a one-shot request.

FTPMAN Design for Local Stations Oct 24, 1991 page 6

In summary, then, the FTPM local application is called by the Update Task during
data access table processing each cycle. It is called by the Accelerator Task to
process a network message when it arrives. The handler whose entry point is
registered in the protocol table is called by the Update, Server and QMonitor
Tasks when appropriate to build replies and to delete one-shot requests.

Time-stamps
The first version of this FTPMAN support has a serious problem in that the

time -stamps that are recorded with each data point are not correct. It is required
of every front end that supports FTPMAN that the reference for the time-stamps
be the clock event 02 of the Tevatron clock. This allows the fast time plot
program to correlate data points collected from different front ends on the same
plot. But the local stations do not yet have access to this clock event signal, which
occurs every 5 seconds. There are two solutions to correct for this.

The first is to install hardware to decode this clock event signal that would make
it available to a local station. If one local station had this information, it could use
the network to send it to all the rest. It might do it only once per minute, rather
than every 5 seconds. Local stations can count 15 Hz cycles as well as any node.
What is missing is the proper phase. As a result, it might take up to one minute
before a newly-reset local station was able to furnish correct time-stamps for fast
time plots. A disadvantage of this approach, besides the need to build the
hardware, is that it makes one node more important than the rest, which is not in
the spirit of distributed systems.

The second solution is to design another FTPMAN protocol variant which would
include in the request a suggested starting value for a time-stamp. This solution
is a software-only solution. The FTPMAN requester must know about these clock
events anyway, because it must interpret the time-stamps to plot the data. But
the requester will not know if a front end supports the new variant. So the logic
might proceed by trying the current continuous plot standard request format. If
an “unsupported typecode” response is returned, it could switch to using the
new variant. This might seem messy, but it is unlikely that other front ends that
do have access to clock event 02 would implement support for the new variant.

The current version of FTPMAN for the local stations is about 1200 lines of Pascal
source code that compiles into less than 6K bytes.

 FTPMAN Timestamps
Local Station implementation

Nov 11, 1991

The FTPMAN protocol for Fast Time Plots specifies that data points be tagged
with a 16-bit unsigned timestamp in units of 100 µ s that is synch ronized with
Tevatron clock event 02, the event which occurs every 5 seconds (75 cycles). For
15 Hz data collection for plotting, appropriate for most Linac devices, it is
sufficient to keep a cycle counter that is reset to zero on the cycle marked by the
02 event and incremented each cycle thereafter. Its values will thus range from 0
to 74. But Linac local stations do not have easy access to Tevatron clock event
signals, at least until recently.

A hardware module was installed at the klystron rf test area in A0 on Nov 4,
1991, that detects a selected set of 16 Tevatron clock events. This will be used to
collect spark statistics according to the accelerator cycle on which they occur. It is
believed that spark occurrences are not strictly random. If a spark occurs on one
cycle, it is less likely to occur on subsequent cycles. One can induce a spark by
raising the power, so by programming the power carefully, the spark rate can be
made to be much lower on real acceleration cycles than it might be otherwise.
One of the 16 events detected by the module is event 02.

For each detected clock event, the hardware module generates a pulse which is
stretched until about 40 msec into the 15 Hz cycle. The resulting status bits are
read via two bytes of digital I/O through a rack monitor. Watching successive
readings of these two bytes, as each event occurs, a one bit appears in its
corresponding bit position.

A data access table entry was added to node 062A which sets the reading value
of a pseudo-channel to a count of the cycles since event 02 was a “one”. This
entry is as follows:

1500 03FE 0000 0000

0000 8000 0186 0001

Bit 0186 gives the event 02 status, and channel 03FE is the target channel. The
8000 word specifies that the counter be reset when “1” status occurs.

Three other data access table entries are used to send to all Linac local stations a
group-addressed setting that targets the 4th word of the Generally Interesting
Data area. (The first 3 words are used to receive time-of-day information sent
from node 0516 every minute of every day.) These entries are:

7F00 0F00 0000 0000

0000 0000 0000 0000

FTPMAN Timestamps Nov 11, 1991 page 2
00FC 0006 0000 0001

0D23 0000 0014 3FE0

062A 0006 0000 0001

The first entry establishes a period of about 4 minutes ($0F00 cycles). The second
entry sends a G.I.D. setting to the LINA group address. The third entry sends the
same setting to node 062A, as Classic protocol settings are ignored if they are
received over the network from the source node.

In each Linac local station which has FTPMAN installed, the FTPM local application
is called every 15 Hz cycle. At that time, the timestamp data word is
incremented, resetting it to zero when it exceeds 74. When fast time plot data is
being updated and tagged by the current time, this timestamp counter is used
and scaled to 100 µ s units.

This scheme is not strictly distributed, in that without node 062A, fast time plot
timestamp synchronization cannot be achieved. On the other hand, the signals
exist at only one node, so this scheme makes the most of it.) The time-of-day
clock is similarly multicast by a node more equal than the rest.)

Tests of the behavior of the fast time plot when receiving data points time
stamped according to this scheme exhibited purely forward time motion, whereas
prior to this implementation various degrees of erratic activity of the plotted data
points were observed depending upon how nearly to the time of event 02 time
was the request initialized.

This scheme should suffice until a new FTPMAN protocol variant is developed
which sends a suggested timestamp value along with the request, an imple men
tation designed to help front ends use the FTPMAN facility without the need for
Tevatron clock signal input.

Data Access Table function
Thu, Feb 18, 1993

This note describes a Data Access Table routine that monitors 16-bit counters to insure
that co-processors are functioning normally. It can also monitor the rate of counter
advance to show load level. By including a result status bit in the alarm scan, one can
generate an alarm message when either a co-processor quits working, or access to a co-
processor stops working.

Data Access Table entry layout:

2 4 0 0 Chan# ptr to counter word

offset to next counter word Bit# #Chans

The change in value of the counter word since the last time this entry was processed is
stored as the reading of the given Chan# channel. This can be one 15 Hz cycle, or it can
be more using an appropriate $7F period entry to specify a sub-multiple rate of
execution. For #Chans > 1, the offset longword is used to advance the ptr to get the next
counter word address, which is then used to target the next channel.

An optional Bit# word specifies a Bit# that is set or cleared to indicate whether the
change difference value is nonzero or not, respectively. (If this option is not used, the
Bit# word should be zero.) The reading of this Bit can then be used to generate an alarm
message when it is zero, indicating that the counter is not changing. This feature is
probably easier than trying to predict what the value of the change should be in order to
set the nominal and tolerance values to alarm on the analog channel.

If a bus error occurs when accessing the counter word, the delta value is set to zero, and
the (optional) Bit is cleared, indicating that the counter is not changing.

Note that the longword offset value allows accessing multiple co-processor counter
words across the vertical interconnect with a single entry, if the counter words are in the
same location in each co-processor’s memory.

Multiple Networks
Support for both token ring and arcnet

Apr 23, 1990

To support the arcnet connection to the new smart rack monitors to be used
in the Linac upgrade project, it is necessary to handle both the token ring
network and the arcnet network. This note discusses an approach to
simultaneous support of both networks.

The approach is designed to share as much code as possible between the two
networks. This means trying to preserve the same protocols for both.

Transmission
A parameter in the message to be transmitted from a local station should

indicate which network is to be addressed. Where we have a destination lan-
node in the protocol, as for the Acnet header-based protocols, a value of the
lan byte can indicate the arcnet network. In the case of the “classic” protocol,
the “03” byte can become a lan byte and allow use of a similar scheme.

Suppose there is a lan-network table which gives the network that is to be
used for a given lan. The lan# is the index in this table, which should be in
non-volatile memory (or in prom). By inspection of the destination lan byte,
we get the network to which the message is to be sent.

Classic protocol
The classic protocol presents some special problems because it has no lan

byte in the network message. There is a destination node byte which is
followed by a byte whose value is always $03. To remain compatible with
present systems, the byte should have this value when transmitted on the
network.

When a message is received, the destination node byte is changed to the
source node, which is obtained from the hardware protocol. The $03 byte is
currently changed to the destination node. This last change is made only so
that later message processing can determine whether the message was sent in
a group-addressed frame. For example, when a data server request is received,
a check is made that it was sent to that single node, as group addressing of
data server requests is not allowed.

Suppose we modify the logic in this way for the case of the arcnet network.
Change the $03 byte to a code which specifies the group address tag in the hi
bit (1=broadcast) of the byte. There then remain 7 bits which to be used as the
network for the reply. It should have a distinctive value that would not
conflict with a lan byte value. An example might be the value $7x, where the
x is the net#, which is not expected to be a valid lan value on token ring. This

Multiple Networks Apr 23, 1990 page 2

On the transmit side, when a reply is being prepared, the source node of the
request is used as the destination node of the reply. Let the $03 byte be used to
convey the network to be used in the reply. Suppose it is a copy of the other
byte that was received (not including the sign bit). Then a value of $7x could
be an indication to use network#x. Other values would be considered as a
lan# and looked up in the lan-network table to get the net#.

The lan byte would be used to direct the OUTPQX routine to place a reference to
the message into the proper network pointer queue. When arcnet messages
are collected into frames, the byte will be altered to the value $03 in the frame
buffer so as not to confuse presently installed nodes which require that the
byte have that value.

The point is that the $03 byte in the classic protocol is used internally to
remember only whether the message was broadcast (or group-addressed). It
always has the value of $03 externally. It will now be used also for retaining
the lan used for the reply in the classic protocol case on token ring, and it will
be used for retaining the net# for the reply for the classic protocol on arcnet.

Acnet header protocol
A special problem occurs with Acnet header-based protocols on arcnet.

Since there is no DSAP byte in the frame header, that method cannot be used
to distinguish the two protocol types as was done in token ring. So we must
determine the protocol type in the arcnet receive interrupt routine by
inspection. The first word of a classic protocol message is the message size.
The first word of the Acnet header is the flags/msgType word. Since this word
does not currently use the hi five bits of the word, we may assign one of these
bits for the purpose, say the sign bit. When a frame is sent on arcnet which
uses the Acnet header, the code which queues the frame to the arcnet chip
should set the sign bit in the first message in the frame. The arcnet receive
interrupt routine will look for this bit set (and will clear it) to decide to which
message queue the frame reference message should be sent.

OUTPQX
This routine queues a message to the network given by the lan#. For

classic protocol messages, the lan# is the “$03” byte. For Acnet messages, it is
specified in the destination node-lan word for request/USM messages and in
the source node-lan word (from the point of view of the requester) for a reply
message. The lan# indexes into the lan-net table to yield a net#. The net#
indexes into a NETABLE which contains key parameters of that network.

The present OUTPQX routine has with it a related OUTPQL routine which was

Multiple Networks Apr 23, 1990 page 3
output ptr queue that was last used, so it is proposed that this one be dropped.
The code in the Update Task which makes this call should prepare the
destination node byte in the external request block (type#5) before calling
OUTPQX. Then OUTPQX will properly capture the node-lan and preserve it in
the output ptr queue entry for use when messages are collected into frames.
The problem for which this is a solution is the case of re-issuing an external
request message to multiple tardy nodes at once.

Present lan# situation
With the present system software, the lan byte will turn out to be zero by

default, as it has not been used yet. Thus, it may be considered that lan#0 is
the default lan. And the default network is the one whose net# is in the
lan#0 entry of the lan-net table. By changing the lan-net table, one can make
the current software use the any “default” network. Later software will allow
the local user to set the lan byte arbitrarily, and that will determine the
network to be used.

For the case of replies, the network which delivered the request will
presumably always be selected for the reply. The request logic must keep a
record of the lan# to use for the reply. To cover the classic protocol case on the
arcnet network, there is a means of allowing the receive interrupt routine to
specify a net# for the reply, as there no lan# which in the frame header.

NetSend
This routine flushes queued messages to the network. For the case of

multiple networks, it is proposed that this call flush all output ptr queues to
their respective networks. This call is made after a logical completion of the
building and queuing of network messages. It is quite likely that only one
output ptr queue is non-empty.

NetXChk
This routine checks whether a message about to be queued to the network

is destined for a different node than the first one awaiting to be transmitted. If
it is different, then all messages queued to the network are flushed. For the
multi-network case, the question is what network output ptr queue to check.

Since this is merely an efficiency issue, in order to more promptly deliver
answer response messages packed into frames, we may consider checking
only the default network for the time being. An eventual call to NetSend
should flush all network output ptr queues.

The point here is that the Network Layer routines tend to hide the concept of
the network from the user. The user merely specifies the destination node-

Multiple Settings
Extension of single setting network message

Apr 13, 1989

Introduction
Network setting messages have been limited to a setting of a single listype-

ident pair. Although multiple setting messages can be combined into a single
network frame, some host-level implementations have found this feature
difficult to support. The penalty in terms of network efficiency is quite severe
when many settings cannot be combined in this way, as the network
overhead time to process a frame is often quite high.

In view of the above state of affairs, it is worth considering allowing multiple
setting commands to be combined into a single setting message . The program
which builds the setting commands must realize that they are logically to be
executed as a unit. An example of this is the extensive need that D0 has for
downloading pedestals and other parameters of its fast physics data
acquisition boards. Another example might be using “mults” for
simultaneously adjusting steering magnets in a beamline to accomplish a
parallel shift in beam position while preserving the beam direction.

It must be noted that the new D0 message protocols certainly allow for this
type of multiple settings. However, as they are not yet ready for the VME
systems, a small effort in extending the present protocols to support multiple
settings should be worthwhile. It is a stopgap measure that allows host-level
programming efforts to proceed unimpeded.

Multiple Settings Apr 13, 1989 page 2
Implementation

Recall the present format for a network setting message:

msg size

node

lan

inserted if
byte-size
#bytes=0

#bytes
lType

id-size 1–7
in words

3

$03

#bytes

node

data

index
ident

setting
message

setting
command

In this example the ident-size is 2 words (4 bytes), and the data is two bytes.
Note the definitions of a setting command vis à vis a setting message.

To implement multiple setting commands within a single setting message,
merely concatenate the setting commands within the message. The message
size word must reflect the total size of all the concatenated setting commands,
plus 4 for the setting message header.

Data server option
Now that a setting message can comprise more than a single command,

the idents could refer to different lan-nodes in the different commands. If a
setting command designates a different station in the ident than the station
which receives the setting message, the data server option would allow the
setting to be passed on to the designated station. Without the option, such a
setting would be ignored.

The data server option is enabled by setting bit#11 (mask=$0800) in the first
word of the setting command (the one with the $3000 in it). If a setting
message is broadcast, any data server option bit set in the first word of an
included setting command will be ignored. This is the analogous treatment of
the data server option bit in data request messages.

Network Addressing Notes
What’s a node number?

Apr 2, 1990

These notes explore the conventions used in network addressing for the VME
Local Stations. There are two sets of network protocols that are handled by the
local stations. The “classic” protocols do not use the Acnet header, while both the
DZero and Acnet protocols do.

Acnet header protocols—current
When a request is received, the node# byte is taken from the source node/lan

word and used to install a copy of the 6-byte network address in the Node
Address Table (using the NATENTER routine). This node# is used internally for
the destination node for the reply. This method means that any network address
can be used for any node, just as long as the requests from different nodes (with
different network addresses) do not use the same node#. If they did, the second
one’s network address would overwrite that of the first one in the NAT. That
could mean that the replies from an active request from the first node would all-
of-a-sudden be sent to the second node instead. Note that the lan byte is not
checked here; however, it is returned in the reply as it was received in the
request.

If the local station wants to send a request or USM, it starts with the node# as a
destination. The corresponding entry is checked in the NAT. If it is there, then the
stored network address is used. If it is not there, then the local station’s address is
used, with the node# replacing the sixth byte.

Classic protocol—current
There is no source node/lan information in the message. Instead, the sixth

byte of the source network address is interpreted as a node#. For any message,
the NAT entry is updated. Therefore, the network address used by a node for this
protocol is not arbitrary. The last byte must be unique. The other 5 bytes can be
used arbitrarily for requesters. But when a local station wants to talk to a node
given a node#, it will still assume the network address is remarkably similar to
the local station address in the case that the NAT entry is empty.

Acnet console practice
The consoles run by accelerator operators are all downloaded with a common

logical node table that contains all the network addresses that are assigned to
each logical node. The logical node numbers are 16-bit values found in the
database. The values are in the range $0001–03FF, although only the first 72
values are currently used. In some cases, more than one logical node can refer to
the same physical node. When a request is received from one of these consoles,
the NAT table should be used to keep the network address. Seventy-two entries
would be sufficient for the present.

Network Addressing Notes Apr 2, 1990 page 2
For front end nodes, the current practice is to hand out blocks of 256 node
numbers for specific uses. For these cases, the lan byte of the source lan-node
word is greater than three. Thus, the new QPM systems have been assigned the
“lan” byte value of 4. The new Linac stations may be assigned the value of 5, for
example. DZero stations might be assigned the value of 6, if desired. To simplify
the handling of micro-based stations, the lan-node word is used as the last two
bytes of the network address, the first four bytes being constant. The value of the
constant is $40020000. Therefore, when a request is received, the network address
does not have to be saved in a table. Only the source lan-node is saved as the
destination lan-node for the reply. When the frame is to be transmitted, the value
of the destination network address is simply the constant value for the first 4
bytes and the destination lan-node used for the last 2 bytes.

Local station lan byte
When a local station issues a request of a USM Acnet header-based message,

the source lan-node must be filled in for the Acnet header. One way to do this is
to use a constant value known to the program. Another way is to keep it in non-
volatile memory in the TRING table. Either way, it would be the same value for
each request or USM message. (This does not apply for the reply message, since
whatever was received in the request is simply echoed in the reply.) This method
will mean that the user does not have to enter the lan byte value when she types
in a channel number, for example, since it is fixed and supplied automatically.

Lan byte in ident
When a request is received that gives an ident for which data is requested, the

lan byte will be a value like 5, for example, if it is a Linac device. The code that
checks for a match on the node will have to work for this case. Perhaps the
MYNODE word will have to be a value like $0508, for example. The hi byte would
be the local station’s lan number. Or, the code could perhaps ignore the given lan
byte value and only check on the node byte. Right now, the first word of long
idents are matched against the whole word stored at MYNODE(A5).

 Network Group Addressing
Considerations for standard conventions

July 11, 1996

Token ring supports group addressing to help filter unwanted messages from
specific collections of nodes. New local station software permits increased use of
group addressing. There is a need to establish some local conventions for group
addressing on the Fermilab token ring network.

Needs of local stations for group addressing

1. Time-of-day message is sent to a functional group address.

2. Destination address for alarms. Alarms are normally sent to a group address
so that local stations, and other interested nodes, can receive and display them
for local consumption.

3. Data requests using the Classic protocol use group addressing to avoid
sending multiple frames when more than one other node is referenced in a single
data request.

4. Memory settings may be directed to group addresses using the appropriate
internal node# reference. This can permit “gang” program downloading.

Standardized group addressing already selected

1. Time-of-day message sent by a local station that receives the NBS clock signal
uses group functional address C000-4000-0000.

2. D0 alarms use group functional address C000-2000-0000.

3. NWA alarms use group functional address C000-1000-0000.

4. IBM software reserves group functional addresses in the range C000–0000–
4000 through C000-0000-0002.

5. The token ring chipset uses functional group address C000-0000-0001
for the ring monitor node.

Network Group Addressing July 11, 1996 page 2
Local station configuration of group addresses used

There is a table of 16 group addresses stored within the TRING table in non-
volatile memory. At reset time, these 16 addresses are copied to another table
which is referenced by the network transmit driver using the internal node#
values in the range 00F0–00FF. In this way, the system can refer to group
addresses as a word value. The meaning of internal node# 00FF is forced to the
broadcast network address of C000-FFFF-FFFF.

1. Time-of-day is sent to internal node# 00FE.

2. Alarms are sent to the destination node# in the 4th word of the PAGEM system
table (currently based at address 00102000). D0 uses the internal node# 00F0
for this purpose.

3. Data requests, when sent to multiple nodes, are sent to the destination node
in the 3rd word of the PAGEM system table.

Token ring chipset support of group addressing

1. All nodes receive all broadcast frames.

2. A node may elect to receive frames addressed to a single “group address.” It
is specified in the Open Parameter List that is used to open onto the network.
This group address is a 31-bit value.

3. A node may elect to receive frames addressed to any set of up to 31 bit-
significant “group functional addresses.” There are 16 bits available for the
“user” to specify so as not to conflict with IBM standard conventions. These user
bits are in the range C000-4000-0000 through C000-0000-8000.

Problem looking for a solution

How can we utilize the available choices to support the needs of Fermilab’s token
ring network?

Network Group Addressing July 11, 1996 page 3
Group address table

Internal node# Address Purpose

00F0 C000-2000-0000 Alarms destination (D0 example)

00F1

00F2

00F3

00F4

00F5

00F6

00F7

00F8

00F9
00FA C000-0400-0000 All local stations data requests

00FB
00FC C000-CC49-4E41 ‘LINA’ Linac program downloading
00FD C000-C45A-524F ‘DZRO’ D0 program downloading
00FE C000-4000-0000 Time-of-day
00FF C000-FFFF-FFFF Pure broadcast

Alarms destination node address depends upon the node’s use:

C000-2000-0000 D0 alarms (D0 protocol)
C000-1000-0000 NWA alarms (D0 protocol)
C000-0800-0000 Linac alarms (accelerator protocol)

Values for words 3 and 4 in PAGEM table:

00FA All local stations data requests (+ name translation)
00F0 Alarms destination

Nodes have optional group address and optional function group addresses:

Assign group addresses to denote downloadable groups.
Assign functional address bits for time-of-day, data requests, alarms.

Network Group Addressing July 11, 1996 page 4
Local station parameter page

The parameter page on the small consoles uses group addressing in two
different ways. One is when a user types a name (6-character accelerator name or
12+4 character D0 name). The other is when there is more than one non-local
node represented in the list of channels on the page. This is done so that only a
single network message must be sent, even if all 14 lines are of different nodes.
The node that is used for either of these cases is the node# in the 3rd word of the
PAGEM system table mentioned above.

One might elect to choose to restrict name look-up to a limited number of nodes
by careful selection of group addressing. For example, name requests could be
sent only to D0 nodes by using the group address given above for D0 node
program downloading. This would work for name look-up.

The same group address would also be used when sending data requests to more
than one external node. For this it would not work properly. When the data
request is sent, if any node does not respond, then another request will be
reissued to that specific node(s) that did not respond. It knows which ones did
not respond because it examines the list of analog channel idents, each of which
includes the node#. This treatment is given repetitive data requests only. One-
shot requests are not given this service. For this reason, the analog descriptors
(including text, names and engineering units scale factors) may not be collected if
the group address used does not address some node(s) in the list.

Also, if a local station is used as a data server node, which collects data on behalf
of another node’s request, the group address of the data server node will
determine which nodes are reachable.

In any case, entering a node:chan on a local station parameter page with no
other non-local nodes represented in the list will address the given node directly
without using any group addressing. This means that the group addressing
cannot prevent access to any given node. It can only restrict name look-ups.

Network Group Addressing July 11, 1996 page 5
Alarms reporting by local stations

Current alarm generating software in the local station software emits Classic
protocol alarms, unless 3 special D0 Device Information Block system tables exist,
in which case it emits D0 protocol alarms messages. It does not emit both on the
network. When a D0 alarm message is received from the network, a local station
converts it into a Classic format alarm message for optional local display.

It is necessary to emit alarms in the accelerator protocol for processing by Aeolus
on the accelerator Vax. Some means must be found to select this option for Linac
local stations.

Accelerator alarm messages include an EMC (Error Message Code) that must be
unique throughout the accelerator system. This is done by including a sub-
system byte in the EMC so that different sub-systems cannot conflict. There is an
alarm status word, a reading value, and up to 15 words of optional parameters
also included in the alarm message.

In order for a local station to be able to receive and display accelerator alarm
messages locally, additional information is required that is not needed by
Aeolus. It can be included in the optional parameters, as they are not now used
by the Linac front end. It is the time-of-day that the alarm occurred, the alarm
flags (a variation of the alarm status word), and the analog channel name or
binary status bit text or comment text (such as a system reset message).

With the above plan, a local station that receives an accelerator protocol alarm
message can convert it into the Classic form for optional local display just as is
done for the case of D0 protocol alarm messages.

Network Services
Jun 5, 1989

Introduction
The Acnet network header will be used by D0 for task-to-task

communication across the network. The current Acnet services use
the concept of a user-specified reply buffer to receive replies to a
request message. An alternate scheme is described here.

It is desired to make use of pSOS message queues (also called
exchanges) to pass network messages through the system. In this
case, the reply buffer is not allocated directly by the user but is
allocated by the network software in the form of a circular buffer. A
received message is passed to the user via a pointer. This saves the
overhead of copying the received message, and it allows for multiple
reply messages to be queued up awaiting processing by the
requester. Reply messages cannot be overwritten by new replies that
arrive before the requester sees them. Furthermore, an AST does not
have to be utilized to get around this latter problem.

pSOS Message Queues
Under pSOS, a message queue entry is composed of 4 longwords

(16 bytes). The queue is identified by a 4-byte name and also by a
4-byte id. A long message must therefore include a pointer to the
real message in the message queue entry. Through pSOS service calls,
a task can send a message to a queue. It can also wait on the queue
for a message to arrive. It does this by reading from the queue; if the
queue is not empty, the message at the head of the queue is
returned. If the queue is empty, the task may elect to return
immediately with status, or it may elect to be suspended until a
message arrives, whereupon it will be made ready.

When a queue is created, the queue id is returned for use with most
service calls which refer to the queue. If another task wishes to use
the queue, it can make an attach call with the queue’s name to get
the queue id. When the queue is no longer needed, it can be deleted.

User Network Access
When a task wishes to use the network, it should call NetConnect

to connect to the network, giving the taskname and the queue id of a
message queue it has created. When a message is received from the
network with the proper SAP for Acnet-header messages, it is passed
through the message queue for processing.

Software organization for message processing

Network Services Jun 5, 1989 page 2
they have been received into system memory. A circular buffer is
used to receive network frames. As there is no way to know how
long a frame is before it is received, the end of the circular buffer
may not get much use. Each frame’s entry has the following format:

size

#msgs

AC/FC

Dest
Node
Address

Source
Node
Address

Frame
Contents

Frame entrySSAPDSAP

03 00

Everything but the first two words comes by DMA from the token
ring chip set. The size word is the total size of the frame entry =
frameSize+4. The #msgs word contains a count of the number of
messages in the frame. It is decremented by each task which
processes the messages. When it is reduced to zero, all messages
have been processed in that frame entry, and the space can be made
available for additional frame entries. The network receive interrupt
must manage the space in the circular buffer, as it pre-pares the
buffer pointer and count values used in the receive parameter list.

The receive interrupt routine checks for a valid received frame. It
examines the AC/FC fields, and it checks for the DSAP and $03
control byte values. Based upon the DSAP value, it sends a frame
message to the message queue to be passed to the task which
handles the corresponding frame format. The format of this frame

Network Services Jun 5, 1989 page 3
message is as follows:

size msgCnt

source dest

ptr to frame contents
—

The size value is the size of the frame contents only; the length of the
frame header has been removed from the received frame size. The
source, dest, and msgCnt values are offsets (from the frame contents
pointer) to the relevant fields in the frame entry.

The task which processes these messages (for a given frame format
as determined by the DSAP value) must distribute the messages it
finds to the appropriate task(s) to handle them. Each frame in
general contains multiple messages, and each message header may
include a destination task name or source task id that is different
from other messages in the same frame. The network hardware
delivers frames between nodes; it knows nothing about tasks within
nodes.

The frame processing task, such as the Acnet Task, scans the frame
contents for messages. Based upon the destination task name (used
for request messages and USM’s) or the source task id (used for
replies), it delivers each message to the message queue appropriate
to the designated task. The size of each message is included in the
Acnet header in the 9th word. The format of the delivered message
queue entry delivered to the designated task is:

size

source

ptr to message

dest

msgCnt

—

The size word is the size of the message, including any Acnet header,
format block and the message itself. The source, dest, and msgCnt
refer to the offsets (from the message pointer) to the relevant fields
of the frame entry in the circular buffer.

A table called NADDR is used to keep the 6-byte network node
addresses of each node. Internally, each node on the network is
denoted by a single byte value. The NADDR table is indexed by this
internal node#. Each entry in this table consists of 8 bytes as follows:

Network Services Jun 5, 1989 page 4

6-byte network node address count

When the task handling a particular SAP format receives a request
message or a USM (but not a reply message), it checks the entry in
this table indexed by source node#. If the source address (from the
frame header) matches, the count is incremented. If it does not
match, the new source address is entered, and the count is initialized
to 1. When a reply message is to be delivered to the source node, the
entry in this table is used to prepare the destination network node
address for use in the frame header by the network transmit logic.
The last few entries of this table contain the group addresses which
can be used. The last entry, indexed by node address $FF, denotes
the broadcast group address. Other entries, from $FE on down, may
be used to denote various functional group addresses.

When one of the message handling tasks, which receives a message
pointer queue entry, has processed the message, it should decrement
the msgCnt word associated with the frame. This allows the network
interrupt routine, when the count reaches zero, to advance the OUT
queue pointer to reflect the new space available for more received
network frames.

Option Switches in VME System
What do the switches do?

Aug 8, 1989

There are eight option switches included on the front panel of the Crate Utility
board. They are rocker switches, where pressing to the right sets the switch=1.
They have meaning to the operation of the VME system software as follows:

#7 Used at Reset time to choose to enter the system or a debug monitor.
0= Enter system

#6 If #7=0, this switch can inhibit the automatic restore of D/A and control
bit settings.

1= Inhibit settings

#5 spare

#4 Enables output of analog alarms to serial port if #3=1.
1= Enable analog

#3 Enables output of alarm messages to serial port. Analog alarms are
included only if switch #4 is set.

1= Enable alarm printing

#2 Enable display of alarm messages on bottom line of little crt. A message
is displayed for a minimum of 2 seconds to allow for reading it.

1= Enable alarms display

#1 Inhibits reporting of alarm messages to the network. The alarm scan is
always active; this means that alarm status is updated, and trip counts
are maintained. The beam inhibit control line, however, is not asserted.

1= Inhibit alarm messages

#0 Special TUNECALC closed loop enabled.
1= Tune closed loop enabled

 ReqD Notes
Software travelogue

Oct 2, 1990

In order to present a compatible network interface to the accelerator Vax
computers, extensive changes are being made in the Local Station software.
The Vax assumes the use of a word-size node number, whereas the local
station software has always used a byte-size node number. This assumption
shows up in numerous parts of the software, and it even affects the page
applications as well, as many of them allow input of a node number as a two
hex digit field. Support for short idents must be retired, since there is no room
for a word size node number in a short ident.

A key module in the system that is severely affected by this change is ReqD.
This is the routine that a user program calls to make a data request and also
the one which supports the data server request, all using the Classic protocol
that was designed in 1980 and has evolved somewhat in recent years. This
module was written in a style that has since been abandoned, and revisiting
the code requires a rewrite in conform to more recently established practices.
The previous style involved extensive use of registers with long-term
significance, thus avoiding the creation of a local stack frame to contain local
variables. It made the program logic extremely difficult to read. Its main
virtue has been that it worked. In rewriting this code, a stack frame will be
used and the practice of using registers whose significance lasts over pages of
code will be resisted. Furthermore, the registers (other than D0-D1/A0-A1)
will be preserved, thus making it compatible with most hi level language
compiler register usage conventions.

The main purpose of these notes is to describe in some detail what the code
does for internal documentation purposes. Its use is expected to be limited,
however, as there is long term interest in replacing the Classic protocol
support with the support for the D0 protocol, as the latter protocol is a logical
extension of the Classic protocol and removes many of the limitations of that
original data request protocol. The actual retiring of the Classic protocol is not
expected for some time, however, as it will affect a number of other users of
the local stations from several other platforms. Those users will need to adapt
to use of the D0 protocol first. Also, the data server support by the local station
will have to be given the D0 protocol before it can supplant the Classic
protocol.

Overview
The routine ReqData is called by a user program to initiate a data request.

The calling sequence is as follows:

Procedure ReqData(list: Byte; freq: Byte;

ReqD Notes Oct 2, 1990 page 2
nIdents: Integer; VAR idents: Integer);

The list is a request-id chosen by the caller that is used to identify the
request in the subsequent call to retrieve the data and to cancel the request.
Values in the range 0–13 are allowed, depending upon the structure of the
LISTP system table; it may be modified to extend the range somewhat. See
more on this later.

The freq byte is actually a period count of 15 Hz cycles to specify a repetitive
request. Zero means a one-shot request. The maximum value of 255 is
therefore about 17 seconds.

The number of listypes, nLtypes, in the range 1–15, specifies the length of the
listype array, specified by listypes. For each listype and associated #bytes
value, the array of idents is processed to produce the resultant answer data.
This means that the listypes must be ident-compatible; i.e., they all must use
the same ident type. Thus, it is not possible to combine a request for analog
channel reading data with memory data, for example, in a single data request.
(This is one of the limitations that the D0 protocol removes.) On the other
hand, one may ask for readings, settings, nominals and tolerances for the
same set of analog channels quite efficiently.

The number of idents in the array idents is given by nIdents. The hi nibble
is used to hold the length of each ident. For example, an analog channel ident
is composed of two words, the node# and the channel index, so the ident
length in that case is 4 bytes. If the ident length is given as zero, the system
assumes a default value. (The current default value is that for a short ident,
but that will be changed soon to the value for a long ident.) In the future, the
ident length may be required to be specified to open the door to alternate
forms of idents for a given listype, such as using a name, for example. Of
course, the lengths supported would have to differ to be distinguishable.

Since each ident carries within it a node#, one may make a request for data
that refers to a number of different nodes, including the local node. The
support software separates out the local idents from the external ones and
issues a network request for the external ones. All this use of the network is
made transparent to the user. S/he only has to issue the following call to
collect the answers:

Procedure Collect(list: Byte; VAR status: Integer;

VAR answers: Integer);

The list number is the same small value used in the call to ReqData. An

ReqD Notes Oct 2, 1990 page 3
answer data is specified by the order of the request. The data for all the idents
of each listype is separately padded to an even #bytes, in case both the #idents
and the #bytes requested/ident were odd.

The system monitors the arrival of external answer fragments that are
received from each external node participating in the request. If a node is
tardy in returning the answer data, the Collect routine attempts to await the
return of that node’s data using a time-out of about 50 msec past the start of
the cycle, after which it returns an error status of either 7 or 8. The value of 8
is used if no answer fragment has been received from that node since the
request was initialized and 7 otherwise. If repetitive calls to Collect are
made, and the tardiness is persistent over 2 seconds, the system reissues the
data request to that node, hopeful that the node will revive and begin
participation in the request.

To cancel a data request, use the following call:

Procedure Delist(list: Byte);

Again, the list argument is the same small value used in the ReqData call.
If the request included external nodes, then a cancel message is sent to those
nodes to cause them to cease delivery of answer fragments.

Internal list# logic
The LISTP table maintains a record of list#s in use, and it provides a

means of avoiding reuse of the same list# in a data request for a period of
time after a request has been cancelled. This is to prevent misinterpretation of
answers to a new request issued immediately following a cancel of a previous
request.

The LISTP table is divided into a “short set” and a “main set” of entries. The
short set is indexed by small values (currently in the range 0–13 as noted
above). A short set entry contains a “full list#” that is allocated from the main
set. The main set is indexed by a full list#. Its entry contains a pointer to the
request memory block (allocated from dynamic memory) that supports the
data request while it is active. By maintaining a record of the last-used main
set entry and a usage count for each main set entry, and by including some
bits of the usage counter in the allocated list#, a newly-freed list# will not be
reused for a long time.

It is important that a data request does not use the same list# as one which is
already in use. The above LISTP logic can provide such service, but the user
interface calls do not allow it. Fortunately, the only data requesting programs

ReqD Notes Oct 2, 1990 page 4
initialized and which accept that full list# in the Collect and Delist calls.
The short set was designed to retain use of the present interface routines but
still prevent the above misinterpretation of answers to new requests.

Delist
Call GetListN to get the full list# associated with the small list#

argument. If it is valid, cancel the request by calling Delist1, and clear the
short set entry by calling SetListN; otherwise, simply return.

Delist1
Call GetListP to get a pointer to the request memory block. Clear the

main set entry by calling SetListP. Delete the request from the chain of
active data requests. Capture the pointers to any external request block and/or
a total answers block. Release the allocated request block memory. If there was
an external request block, queue a cancel message to the network using the
same destination node (which could have been a multi-cast address) that was
used in making the external data request originally, and release the external
request block. If there was a total answers block, release it also. Delist1
preserves all registers. Its single argument is the full list# in D0.

Data Server requests
A data server request is one which originates from another node on the

network. When a data request message is received that specifies the use of the
data server, it is supported by the system on behalf of the network requester.
The Server Task, which runs every cycle at about 40 msec into the cycle, scans
the chain of active data requests for data server requests, calls Collect to
retrieve the data (without waiting), and it queues the resulting “total
answers” to the network requesting node. A total answers memory block,
referenced by a field in the request block, carries the answer response to the
network.

ReqDataS
This entry point is used by the Network Task when it receives a data

server request. If the full list# (specified in the network request by the
requesting node) is the same as one found in the total answers block of a
currently-active data server request, then that request is cancelled. A new list#
is obtained via NewListN. Note that the requesting node’s list# is not used,
since we cannot guarantee that it would not conflict with a currently-active
LISTP entry. However, the original list# is retained for inclusion in the total
answers response to the requesting node.

ReqData
The call is converted into a ReqDataS-compatible call by appending an

ReqD Notes Oct 2, 1990 page 5
entry is cleared via SetListN. A new list# is obtained via NewListN, and is
recorded in the short set entry via SetListN.

ReqdCom
This code is common to both ReqData and ReqDataS. Arguments nLtypes

and nIdents are checked against reasonable ranges. The listypes are checked
for being ident-compatible.

The number of bytes needed for an external request block and for the main
request block is evaluated by scanning the idents for the number of idents
from each external node represented in the request. Memory is allocated both
for the request block and for an external request block, if needed, and the
blocks initialized.

The pointer-type routines are called for each listype to translate each local
ident into an internal pointer and each external ident into a reference to the
predictable part of the external node’s external answer buffer where the
answers will be placed when the answer fragment message is received from
that external node. The result of this “compilation” is an array of “internal
pointers” that are interpreted at data request fulfillment time (via Collect)
by read-type routines. This interpretation loop is optimized for speed, as data
request fulfillment may be done for a number of active requests at 15 Hz.

The “Age” and “Cntr” fields in the external answer pointers are initialized for
detection of tardy external nodes. The main set list# is established via
SetListP.

If the request was a data server request, a total answers block is allocated and
initialized for later queuing of the total answers to the original requester.

The new request is connected into the chain of active data requests via
InsChain, which places it adjacent to another active data request from the
same node, if there is any.

If there is an external request block, it is queued to the network via OUTPQX.

Note that ownership of each of the three memory blocks is assigned to
QMonitor Task via Assign, as QMonitor may likely be the one which may
have to release the memory when the request is cancelled. If the user calls
Delist to cancel a request, a check is made to see whether the external
memory block or the total answers memory block has been queued to the
network but not actually yet transmitted. In that case, a flag is set for
QMonitor to free the memory when the message has been transmitted.

 UDP Layer
Support routines

July 12, 1996

For support of applications that communicate via UDP/IP, some routines
analogous to those of the Network Layer are provided. These routines manage
the port assignments in the same way that the Network Layer routines manage
the task name assignments. (Note that UDP communication that uses the Acnet or
Classic protocols does not need to use these routines. They are automatically
managed using the Network Layer; in a sense, the Network Layer routines
operate at a higher level.) The UDP routines are designed to be used by the server
programs that accept UDP datagrams containing either Acnet or Classic protocol
messages. They can also be used by user applications that want to communicate
UDP datagrams that contain other protocols.

UDPCnct(portReq: Integer; qId: Longint; evtMask: Integer;

 VAR portId: Integer): Integer;

The first argument of this function is a UDP port# to be assigned. If it is zero on
entry, a dynamic assignment is requested, and the newly-assigned index is
written to the portId variable, unless none is available. If the value for portReq
on entry is nonzero, it is a request for assignment of the given port#. If the given
port# is already assigned, UDPDcnt is first called to close the previous connection.

The qId is the message queue used for receiving messages directed to the
assigned port#. The evtMask, if nonzero, specifies the bit mask used to signal
the calling task of the arrival of a message.

UDPDcnt(portId: Integer): Integer;

Remove the assignment of the given port# from the port table. The message
queue field is cleared to indicate that the entry is available.

UDPQueue(portId: Integer; VAR mBlk: MBlkType;

 VAR xmitStat: Integer):Integer;

Queue the message contained in the message block to the network and flush the
network queue. The message block is a special type $0016 used for UDP

messages. NetXmit will precede the message with the IP and UDP headers formed
from the destination node# within the message block.

UDPCheck(portId: Integer; timeOut: Longint;

 VAR mRef: MRefType): Integer;

Check for a message waiting in message queue used by the given portId. A
timeOut value of –1 specifies "no wait." A positive value is in 100 Hz ticks.

UDP Layer July 12, 1996 page 2
UDPRecv(VAR mRef: MRefType; VAR buf: BufType; maxSize:Integer): Integer;

Copy the message referenced by the mRef structure into the given buffer.

UDPOpen(port: Integer): Integer;

Establish an entry for given port# in the port table. A message queue is
automatically created using the given port#. If the argument is zero, a dynamic
assignment is made. The value of the function result is the portId. In this case, a
zero result is an error, as the portId should be positive.

UDPClose(portId: Integer): Integer;

Close UDP port indicated by portId. This calls UDPDcnt and also deletes the
message queue used by the connected port.

UDPRead(portId: Integer; VAR buf: BufType; mxSize: Integer;

 VAR mSize: Integer; VAR srcN: Integer): Integer;

Check the message queue used by the given portId. If a message is present,
return a copy of the message, along with its size and source node#.

UDPWrite(portId: Integer; VAR buf: BufType; size: Integer;

 node:Integer; VAR xmitStat: Integer): Integer;

Write the message to the network. The function NetQueue is called after
preparing the message block using the buffer contents. The node# is assigned
from InsIPARP and specifies the info needed to fill the IP and UDP headers.

Clock Event Queue
For Clock Decoder board

Sep 6, 1989

The Clock Decoder board captures clock events and records them along with a 720 Hz

time-stamp into a hardware fifo. In order to make this clock event data accessible to

multiple users, the hardware fifo is read by a routine invoked from a Data Access Table

entry, and its data is copied into a software circular buffer. This Clock Event Queue is

implemented as a data stream and is therefore accessible via data requests using the data

stream listypes.

The Clock Event Queue has the following format:

qType eSize hOff qSize

nFFull nFEmpty nLastCy rstTime

total ––

IN LIMIT START –

This layout is excerpted from the Data Stream Implementation document. The qType=1,

the only currently supported queue type. The eSize=4, as the packets of data consist of

a clock event# word followed by a time-stamp word. The hOff=24, the offset to the last

4 words which are clock event-specific data. The qSize is the total space used for the

Clock Event Queue. The total long-word is a count of the total number of packets ever

written into the queue.

The IN, LIMIT, and START words are used by the queue management routines

associated with queue type 1. The IN word is the offset to the next available space in the

queue. The LIMIT is the same as the queue size. The START word is the offset to the first

packet in the queue. When the advancing IN word reaches LIMIT, it is reset to START.

The nFFull word is the number of times the fifo has been found with fifo full status.

When this happens, the fifo is cleared. The nFEmpty word is the number of times the

fifo has been found to be empty at the start of processing. The nLastCy word is the

number of events that were found the last cycle that the fifo was accessed. The rstTime

is the time-stamp value that was last read at the occurrence of a cycle reset event. It is

used to adjust the time-stamps read to be relative to the time of cycle reset.

The Data Access Table entry format is as follows:

boardAddrnMaxtargetChan0 0

rstEvt

$1 C

#chansbitMapPtr

DS#

flags

Clock Event Queue Sep 6, 1989 page 2
There are three jobs which can be done by this entry with the clock event data. The Clock

Event Queue (as a data stream) records packets about each event that is read. A range of

analog channels is updated with the most recent time-stamps for the corresponding

events. A bit-map is updated with bits set to indicate the occurrence of the same range of

clock events.

The targetChan is the base channel number of the range used to hold the time-stamp

data, likely with the option enabled to store these time-stamp data relative to the time of

the cycle reset event. The nMax byte is the maximum number of times the fifo is read

while processing this DAT entry. The DS# byte is the data stream index used to identify

the Clock Event Queue data stream according to the DSTRM table. The boardAddr is a

word that gives the Clock Decoder board’s fifo address in VME Short I/O space.

The bitMapPtr is a pointer to the base of the bit-map array which contains bits set to 1

whenever the corresponding event occurs. The bit-map may optionally be cleared at

cycle reset time. The flags byte includes the following options:

bit# option

7 1= enable cycle reset event logic

6 1= enable bit-map updating

5 1= enable bit-map clear upon cycle reset

4 1= longword bit-map array, 0= byte bit-map array

3 spare

2 spare

1 spare

0 spare

The cycle reset event# is specified by the next byte. It is only used if the cycle reset event

logic is enabled. The nChans word is the number of channels starting at targetChan

that are used to record the corresponding time-stamps. Events are processed in the range

00–n, where n= nChans-1. It is also used to give the range of events that are recorded in

the bit-map table, if the bit-map is enabled.

VME Clock Timer Board
Analog control of AMD9513 channels and clock events

R. Goodwin
Oct 10, 1989

The VME clock timer board uses four AMD9513 chips each of which provides
two 32-bit timers with one µ sec resolution in the settable delays. It also includes
a 256-byte memory which specifies which of the channels (up to eight) is
triggered for each of the 256 possible clock events. Each bit position in the byte
corresponds to a different timing channel. This note describes how the VME
software implements control and readout of these timing channels.

Design
The generic parameter page is typically used for display and control of

numeric values via analog channels. When new devices are added to the system,
it is worth trying to see if they can fit into this generic scheme and thus inherit
the features that parameter page interaction provides. It also serves to present a
consistent interface to the user. The features of the clock timer board that require
support for numeric values are these:

• Read and write the 32-bit delay settings (timing channels)
• Set possible multiple clock events which can trigger the delays
• Read what clock events are currently set for each timing channel

Since the delay values are 32-bit quantities, and the VME software does not
support 32-bit setting values, the timer delay channels are represented by a pair
of analog channels which include a “coarse” and a “fine” control. The coarse
channel is in units of msec, and the fine channel is in units of µ sec. On a
parameter page, it is easy to read out this way, especially if the engineering units
are chosen as msec for both coarse and fine channels. For timing to only msec
precision, adjustment of the coarse channel is sufficient. Fine tuning is possible
down to the hardware resolution by use of the fine control channel. This coarse
and fine treatment also helps to solve the knob resolution problem inherent with
adjustment of hi resolution devices.

The use of coarse and fine channels as described above allows for more than one
pair of coarse and fine values that can result in the same time delay. Since the
counters can be read back to provide a reading of the delay value, and since that
conversion into coarse and fine values in not ambiguous, the setting ambiguity is
resolved by allowing the fine channel to carry into or borrow from the coarse
channel when the end of its range is reached.

With the fine channel using µ sec and the coarse channel using msec, the limit in
the range of delay setting is only about 32 seconds (if we keep the values
positive). If this is insufficient for the users’ needs, then the coarse channel could
be changed to have units of 10 msec, which would allow for a range of delay
setting of about 5 minutes.

VME Clock Timer Prototype Oct 10, 1989 page 2
setting values is a clock event number. The number of such channels to be
installed can be tailored to the needs of the users based upon the intended use of
the timing channel and on how the entire clock system is organized. When a
clock event setting is made to one of these channels, it checks to see whether that
event is already selected for that timing channel. If it is, the setting is ignored. If it
is not, the current event setting of the channel to be set is first deselected, and
then the new event is selected. This insures that all such setting channels will
have unique event number setting values. Note that this logic means that one can
adjust an event number with the knob and end up with only the last clock event
selected. A zero value setting can be used to deselect an event that was set before.
But since there is actually a clock event #0, the value 256 can be used to cause
event#0 to be set.

As a shorthand means of clearing selected clock events, a special setting is
allowed that causes clearing of all selected events from the 256-byte RAM for a
given timing channel. At system reset time, when the restore of D/A settings is
taking place in channel number order, the channels holding clock event values
will reselect those events for a given timing channel. This means that a lower-
numbered channel should be used for the purpose of clearing all selected events
for that timing channel.

To provide a readout of the selected events that were set, one could merely copy
the setting value to the reading. This would partly work, but it has difficulty with
the “clear all” setting just described. To get around this, a reading of these event
channels supplies a copy of the last setting only as long as the corresponding
RAM bit remains set. As soon as it is cleared, by whatever reason, the event
channel will have its setting cleared, and the reading will then become zero also.

The readout for a “clear all” channel is a count of the number of clock events
selected for a given timing channel. This channel could be scanned for alarms to
insure that the number of selected events did not change unexpectedly. To
execute the “clear all” function, a zero value must be used for the setting. Then
the reading would naturally be expected to become zero as well.

VME Clock Timer Prototype Oct 10, 1989 page 3
Analog control field

The specification of the control parameters needed for 9513 channel control
must be contained in the Analog Control field of the analog descriptor. The
format of that 4-byte field is as follows:

type aux address

The first byte indicates the type of analog control, which in this case would use
the value $0F to specify 9513 timer type. The meaning of the other three bytes is
dependent upon the type, so we are free to choose anything convenient. Let the
aux byte specify which timer channel, whether it is the coarse or fine word, and
whether it is a delay setting, an event setting or a clear-all-events setting. The
address word is enough to indicate the board’s base address as it is presumed to
be in VME short-I/O space, which means that the upper part of the address is
$FFFF. (In fact, the base address must be on a 4K boundary, which means that
only 4 bits is really needed to specify the board’s VME base address.)

Specific values of the aux byte are:
$0x Coarse delay chan #x
$1x Fine delay chan #x
$2x Set event# for chan #x
$3x Clear all events for chan #x

The value of the x nibble is 0–1 for the prototype board. It will range from 0–7 for
the final board, since that board supports 8 timing channels. Each timing channel
will require four analog channels (or more, in order to handle multiple selected
events) to cover all choices.

The following steps are performed to set the two timer channels on the prototype
board:

Chan #0 Chan #1

$C100 → (17) $C100 → (17)

$01E1 → (01) $03E1 → (03)

$1221 → (02) $1421 → (04)

$0000 → (09) $0000 → (0B)

lsw → (11) lsw → (13)

msw* → (0A) msw* → (0C)
(63) (6C)

The numbers in parentheses are register selects at the byte at offset $810 from the
board’s base address, followed by an access to the ls byte and then the ms byte to
make up the word, each referencing the byte at offset $800 from the base address.

VME Clock Timer Prototype Oct 10, 1989 page 4

When a setting is made to a delay channel, the entire initialization logic will be
performed the first time a delay is written. The coarse and fine channels should
be arranged to be consecutive channels so the setting software can put the two
halves together.

The lsw and msw* refer to the lo order and modified hi order words of the 32-bit
setting. The last step does the Load and Arm operation. If the Master Mode
register is read and found to not be $C100, the entire chip must be initialized. If
the a timing channel’s mode register is read and has the value not ending in $E1,
then that counter must be initialized as above. If the Master Mode register looks
good, and the counter’s mode register also looks good, the only the lsw and then
the msw* words should be written to set the counter delay. The other steps
should be skipped.

Internals
A new analog setting routine called SET9513 was written to support all

settings for this board. It is invoked when the analog control type byte=$0F. It
uses the aux byte and the addr word to do its I/O, including initializing the 9513
chip when necessary.

Three new data access table routines were written to support readings of the
types mentioned here. Type $17 invokes RDEVCNT to tally the number of clock
events selected for a given set of timing channels on one board. Type $18
invokes RDEVNTS to test whether the last selected event is still selected in the
trigger RAM. Type $19 invokes RD9513D to read back the coarse and fine delay
counts.

All four new routines are contained in the MOD9513 module of 500 lines of code
which assembles to about 900 bytes.

Event-driven Replies to Data Requests
In sync with clock events

Wed, Mar 23, 1994

With the addition of clock event detection hardware in the digital
IndustryPack board used in IRMs, we can provide event-driven replies to a
data request. For the Classic Protocol, one must be able to specify what
clock event should be used to indicate on which 15 Hz cycles the data
should be sampled. Using this facility for Linac, for example, one could
then reply to a data request only on beam cycles.

The Classic Protocol format for data requests includes the following:

period #ltypes

The period byte is expressed in cycles (15 Hz), allowing for any period
from 1–255 cycles, or 0 for a one-shot request. For event-driven replies, an
8-bit clock event# is needed, so it is natural to specify this in place of the
period byte. But then we need to mark the fact that the “period” byte is
really an event#. The #listypes byte is usually limited to 4 bits or so, as a
Classic request is for a matrix of data to be returned, with all idents
processed for each listype#. If 4 bits is enough space for the #listypes field,
we can use the upper 4 bits of that byte to contain flags, one of which can
mean that the “period” byte is really a clock event#.

When the specified event occurs, an update of the request is generated, so
that the data from the data pool is returned on that 15 Hz cycle in which
the event has been detected. How can the logic recognize which events
have occurred?

The event detecting hardware is programmed to generate an interrupt
whenever any event is detected. The interrupt routine reads the event
from a FIFO, allowing for many events to occur almost simultaneously
without being lost, time-stamps it, and writes the time-stamp into the
clock event times table. The information about clock events is present in
this table, but it is not so easy to process it in order to quickly check
whether it is time to reply to a data request.

One possibility is to maintain a clock event queue, in which is recorded the
event# for each event that occurs. The interrupt routine, besides updating
the clock event times table, would also write into this queue. To make it
easy for a host to read out the contents of this queue, it can be designed as
a data stream. But DSWrite, normally used to write records into a data
stream, has too much overhead processing for interrupt code, so we can
access this queue directly more efficiently.

Event-driven Replies to Data Requests p. 2
Now the process of deciding what events have occurred since the last
request update is easy. For each request, there must be kept an OUT offset
into the event queue that indicates the next record to be checked. Scan all
event records written into the queue since the last update, looking for a
match on the specified clock event#. If there is a match, then it is time to
update and return a reply to the request.

Another approach is to maintain a bit map of events that have occurred
since the last cycle. For such requests, logic must be done each cycle to
determine whether it is the time to reply. As a result, replies may be
updated up to 15 Hz, in the case that the event occurs at 15 Hz. To
maintain such a bit map, one must be careful, as events are processed by
an interrupt, and the bit map may change between execution of any two
instructions. The task-level solution for this is to copy the bit map into
another area, then exclusive-OR the copied bit map into the dynamic one.
In this way, any bits that were set via interrupts occurring since the bit
map was copied are not lost. They will be detected on the next cycle.

A requester of event data could read out the second area at 15 Hz, thus
insuring that all events would be noticed. A request slower than 15 Hz
would not be able to detect all events, of course, by simply looking at this
copied data. If the requester didn’t care about 15 Hz events, but only about
Main Ring reset events, say, a new listype ould be designed that gave the
bit map at a slower rate, but processing would have to be done at 15 Hz to
inclusive-OR the 15 Hz samples of events during those cycles between
updates. This may be difficult.

Implementation
Support for event-driven replies has been implemented for Classic

Protocol data requests, using the bit map approach internally to detect
whether a given event has occurred since the last cycle. In the case that no
events of the given type occur, no reply will be generated. This makes it
difficult to be sure that the data request was received. The same is true for
a server node; it cannot report that a reply is tardy, unless it also knows
about the event, too. At the moment, this situation is not detected, but the
server node does need to detect the events in order to send replies to the
requester.

Generalization
It may be useful to generalize the meaning of events to include

conditions that are not actually clock events. By setting one of the bits in
the bit map that is not used as an actual clock event according to a
condition detected by Data Access Table processing or by a local

Event-driven Replies to Data Requests p. 3
condition means it might be better if the server didn’t have to know about
events itself.

 Memory Data Streams
Data access table entry type

Dec 22, 1991

Data streams have been a part of the local station system software for a few
years. The original use was to collect clock events from special hardware for the
Loma Linda control system. Since then, major use of data streams has been made
with the D0 high voltage control system. In that case, a separate processor writes
its data into a data stream for which flexible access is sup ported through three
dif ferent listypes. This note describes a data access table entry type which pro
vides for copying memory data into a data stream. Access to such data can be made
by any number of users, a fundamental feature of data stream implementation.

Data access table (DAT) entry format

$2 7 $1 2 dataStream# ptr to memory

delta #bytes #bytes #records

The entry type# is $27. The DSTRM table# is $12. The dataStream# is the DSTRM

table entry#. In that entry is described the type of data stream queue, its entry
size, total size and base address, and an 8-character name as a diagnostic.

This DAT entry provides for copying data records into the data stream from areas
of memory. Beginning at “ptr to memory”, “#bytes” are copied into the specified
data stream. If #records > 1, then additional records of the same size are copied,
applying the “delta #bytes” to the “ptr to memory” each time.

The data actually written into the record is the memory data preceded by 16
bytes of header information in the following format:

time-of-day 8-byte BCD

ptr to memory data 4-byte address
spare longword 4-byte zero

As always, the first 4 bytes of the response data are two words signifying the
number of records included in the reply and the entry size of each record. If the
entry size is zero, the first word of each record is the record’s size.

Alarms Task
Local Station Software Module ALARMS

R. Goodwin
Aug 9, 1989

Function

The Alarms Task performs the alarm scanning of analog channel readings and binary status

bits every 15 Hz cycle. If a channel reading is out-of-tolerance, or if a status bit value has the

wrong state, its alarm state is “bad.” Changes in alarm state are reported by messages sent to an

alarm destination node. At the conclusion of the alarm scan, if any channel or bit is in the “bad”

state that has the inhibit bit set in its associated alarm flags, an inhibit control line is

asserted. This may be used to inhibit beam when key devices are down.

Task events

Event #0 is used to signal that the alarm scan is to be performed. This event is sent by the

interrupt routine that runs in response to the 15 Hz interrupt. (The external 15 Hz trigger pulse

plugs into a Lemo connector on the Crate Utility Board.) This alarm scan is scheduled to run

each cycle after new data has been read and network data requests have been fulfilled.

Event #3 is used to signal invocation of the closed loop code. It is sent by the alarm scan code at

15 Hz; hence, closed loop code runs after the alarm scan finishes. Closed loops can be run at

other times that this event is sent to the alarms task. The operation of a closed loop may

require this if, say, a closed loop starts an action that results in an interrupt that requires post-

processing to be done by the closed loop logic. Closed loop logic is not used in the Loma Linda
system. The CLOOPDMY stub module satisfies the linker.

During the alarm scan, if any alarm messages were queued to the network, event #3 is sent to the

Update Task to flush the queued messages to the network.

Option switches

Some of the option switches on the Crate Utility board’s front panel influence the handling

of alarm messages. The most significant of these is option switch bit#1, the alarm inhibit

switch. When it is on, the alarm scan is performed as usual, but alarm messages are not sent to
the network. They can be displayed locally, however. The inhibit control line is not asserted

while this switch is set, in order to prevent having the inhibit line set while sending no

network message to say why it is set.

Local display of the alarm messages is handled by the QMonitor Task, as it is the one which

“cleans up” after messages that are sent to the network. All alarm messages that result from

the alarm scan are queued through OUTPQ. But when the alarm inhibit option switch is set, a

“used” bit is set that prevents actually sending the message to the network. But QMonitor sees

the message as it processes the OUTPQ entries and can process such messages also. To enable the

local display of alarm messages, set option switch #2 to enable display of the messages on the

bottom line of the small screen display, and/or set option switch #3 to enable output of encoded

alarm messages to the local serial port. Also, option switch #4 must be set to include analog

alarm messages in either type of local display. See “Local Console Alarms Display” document

for more information about the “bottom line” alarm message display.

Alarms Task initialization

Various pointers are pre-computed for more efficient processing during the alarm scans.

Alarms Task Aug 9, 1989 page 2
scan.

Alarm scan

There are two special Bits of status that are used by the alarms task. They are Bits $A0

and $A1 in every node. At the beginning of an alarm scan, each of these special Bits is checked

for special processing.

Bit $A0 is set by a host to clear the analog and binary trip counts for all channels and Bits in a

node. (A trip count is the count of the number of times a channel or Bit has made an alarm state

transition from good to bad.) Typically, a setting command is sent to all nodes via a broadcast

setting after producing a report of all the trip counts of interest in every node. The bit is self

clearing.

Bit $A1 is set by a host to “reset” the alarms in a node. The bit is set upon system reset by

Alarms Task initialization. When the bit is found set, the good/bad status bit in the alarm

flags is cleared for all channels and Bits. The result of this is that any channel or bit in alarm

will, on the next alarm scan, cause an alarm message to be generated. The bit is self clearing.

Alarm Flags

The format of the alarm flags byte used for either channels or Bits is:

Bit# Meaning

7 Active. “1”: this channel or bit should be scanned.

6 Nominal state. Used only for the binary Bit case.

5 Inhibit. “1”: If this channel or bit is bad, assert inhibit control line.

4 Two times. “1”: Channel or Bit must be in a new alarm state on two

successive scans in order to be recognized as a changed state.

3 Beam only. “1”: Only scan this channel or bit on Beam cycles.

2 Not used.

1 Two times counter.

0 Good/bad. “1”: bad.

The first 5 bits are control flag bits. The last two are status flag bits.

The inhibit control line is Bit $90. It is assumed memory-mapped. A one means inhibit.

Beam cycles are signaled by the Beam status Bit $9F. A zero means a beam cycle.

Analog alarm scan

For each channel that has the Active bit set, the Beam flag bit is checked. If it is set, but

the current cycle is not a beam cycle, then the channel is skipped. The difference between the

current reading and the nominal value is compared in absolute value against the tolerance

value. If the reading is outside of tolerance, the channel is judged to be bad, and a message is

sent if the good/bad bit is zero. (The trip count is also incremented, latching if it reaches 255.) If

it is within tolerance, it is judged to be good, and a message is sent if the good/bad bit is a one.

The “Two times” bit being set filters this judgment such that the same alarm state must be found

on two successive cycles before action is taken. The “two times counter” provides the memory for

this determination. The tolerance is a signed value that must be positive; hence, a channel that

is 10 volts away from the nominal value is considered to be out-of-tolerance. This restriction

could be removed if the tolerance were considered to be unsigned.

Analog alarm message

Alarms Task Aug 9, 1989 page 3
Size=34

dest $0 3

$4 8 node

Channel

tripsflags

Reading

Setting

Nominal

Example 6-char
analog device
name 'DVNAME'

D V

AN

M E

Host Data-
base id

Downloaded
from host using
listype 27.

Yr Mo

Da Hr

ScMn

Cy

Time-of-day in
BCD year,
month, day,
hour, minute,
second, cycle.

Destination node used
for alarm messages.

This node.

Binary alarm scan

For each Bit that has the Active bit set, the Beam flag bit is checked. If it is set, but the

current cycle is not a beam cycle, then the Bit is skipped. If the current Bit reading differs from

the Bit’s Nominal flag bit state, and the good/bad bit in the alarm flags byte is zero, then send

an alarm message to the destination node for alarms. (The trip count is also incremented,

latching if it reaches 255.) If the reading matches the Nominal state, and the good/bad bit is a

one, then send an alarm message. As in the case of the analog scan, the “Two times” flag bit

modifies this determination.

Binary alarm message

The format of an binary alarm message that is queued to the network is as follows:

Alarms Task Aug 9, 1989 page 4
Size=34

dest $0 3

$5 8 node

Bit

tripsflags

Bit text
(16-chars)

Yr Mo

Da Hr

ScMn

Cy

Time-of-day in
BCD year,
month, day,
hour, minute,
second, cycle.

Destination node used
for alarm messages.

This node.

…

Comment alarms

A pure text alarm message can also be generated. Currently, it is only used for a message

that announces that a VME system has just reset. The Comment routine is included in the

Alarms Task module to build such a text message for the network. The format of the network

message is as follows:

Size=34

dest $0 3

$6 8 node

Comment
text
(20-chars)

Yr Mo

Da Hr

ScMn

Cy

Time-of-day in
BCD year,
month, day,
hour, minute,
second, cycle.

Destination node used
for alarm messages.

This node.

…

Timing

The alarm flags byte is scanned sequentially for every channel and bit known to the system.

Only channels or bits with the Active bit set are checked for alarm conditions. The three

instruction loop that does this is optimized for efficiency. The overhead to scan 256 channels or
256 bits without the active bit set requires about 250 µ sec on a 133A cpu board. The total Alarm

Task time on such an empty system is 0.7 msec. For each active channel or bit that must be

scanned, additional time is taken. Rough measurements indicate that it takes 5 µ sec to scan a

channel and 4 µ sec to scan a status bit. If a node had a total of 1024 channels and 2048 binary

Alarms Task Aug 9, 1989 page 5

An improvement that could be made in the alarm scan logic would be to find a way to check only

the channels or bits that need to be scanned. A way to handle binary scanning more efficiently

would be to do logical operations on 16 binary status bits at a time, rather than checking one bit

at a time as is done here. But one must weigh the advantage of such changes that would reduce

the scan time against the effort required to make the changes.

Analog Control Types
Channel device control

Sep 22, 1989

The Local Station software supports a variety of hardware interfaces. Part of
the support is that given to analog channel settings. The information in the
analog control field of the analog descriptor for a given channel device
describes the specific form of control which is to be used for that channel. This
note details the various forms of the analog control field for each type. If the
setting action appears successful (no bus error or other errors), the setting
word is updated with the data value for the given channel.

The analog control field consists of 4 bytes. The first byte is the analog control
type, a small index value. The meaning of the other 3 bytes depends upon the
type byte. The types currently supported are:

00 No analog control (parameter page will not mark it with a “–”)
01 Datel Multibus D/A (used in Linac)
02 Motor (setting value is desired reading, relative setting is #steps)
03 Bipolar multiplex D/A (used in Linac)
04 Unipolar multiplex D/A (used in Linac)
05 Memory word (accessed as two bytes)
06 i8253 timer
07 M6840 timer
08 1553 D/A (12-bit)—used in rack monitor
09 Analog Devices RTI-602 D/A board
0A Memory word (accessed as one word)
0B Message queue setting to another cpu (co-processor)
0C Unsigned 12-bit D/A (in short I/O space)
0D Burr-Brown MPV904 12-bit D/A board
0E 1553 D/A (16-bit)
0F AMD9513 timer (32-bits from pair of channels)
10 Memory byte (single byte no shift)
11 Memory byte (single byte w/ shift in short I/O space)

Analog control field formats

—0 0 —

No analog control (parameter page will not mark it with a “–”)

Analog Control Types Sep 22, 1989 page 2

addr0 1 ch#

Datel Multibus D/A (used in Linac)
The ch# byte is the board’s channel#. The addr word is the board’s address

(sign-extended). No such hardware in VME systems.

addr0 2 bit#

Memory-mapped motor (used in Linac)
The bit# in the range 0–7 is the bit in the byte addressed by the 16-bit

address (sign-extended). Motor pulses (~20 µ sec hi-active pulses) are formed
at a 150 Hz rate driven by an interrupt from a 68901 timer on the crate utility
board.

ptr to command blk0 2

1553-based motor
The ptr must be above $100000 to distinguish this case from the above

memory-mapped case. (This is no problem with 1-Mbyte of memory on the
cpu board based at $000000.) The command block houses the 1553 command
for a single word write of the two’s-complement #steps to be issued to the
motor. The external hardware is expected to deliver the pulses. The 150 Hz
interrupt that is used for the memory-mapped case decrements a counter in
order to provide a shadow of the countdown register. This can be used to
determine whether the motor is still running, but it assumes that the external
hardware’s motor pulse rate is also 150 Hz, which may not be the case.

addr0 3 ch#

Bipolar multiplex D/A (used in Linac)
The ch# byte includes the chassis# 0–7 and the channel# 0–15

concatenated to form a 7-bit value. The addr is sign-extended to form the
address of the D/A.

0 4 ch# addr

Unipolar multiplex D/A (used in Linac)
This is the same as type#3, but the setting value is clamped to zero if

negative.

Analog Control Types Sep 22, 1989 page 3
0 5 ptr to memory

Memory word (accessed as two bytes)
The 24-bit memory address is mapped into a 32-bit address as follows:
If the address is < $F00000, the hi byte of the 32-bit address is $00.
If the address is ≥ $F00000, the hi byte of the 32-bit address is $FF.
This mapping scheme allows entry of short I/O addresses plus all

addresses below 15 Mbytes. The data word is written as two consecutive bytes.

0 6 ch# addr

Intel 8253 timer
The ch# is in the range 0–2. The addr is sign-extended to form the address

of the 8253 chip. (Not used in VME system)

addr0 7 —

Motorola 6840 timer
The addr ends in 2, 4 or 6 to indicate which of three 16-bit timer channels

is to be set. Setting values ≤ 0 are clamped to $0001. (Not used in VME
system)

0 8 ptr to command blk

1553 D/A (12-bit)—used in rack monitor
The command block houses the 1553 command for a single word write to

the D/A.

0 9 address of board

Analog Devices RTI-602 D/A board
The address is mapped into 32-bits via the type#5 scheme. The data value

is converted to offset binary and written to the resultant address.

0 A ptr to memory

Memory word (accessed as one word)
The address is mapped into 32-bits via the type#5 scheme. The data word

is written as one 16-bit word. (Some hardware boards require this.)

Analog Control Types Sep 22, 1989 page 4
index0 B type

Message queue setting to another cpu (co-processor)
An analog control message is placed into a co-processor message queue.

The cpu# is included in bits 6–4 (mask=$70) of the type byte. The message
placed into the queue is formatted in this way:

size=8

type & $8F

index

data

The first word is the size of the message, which in this case is always 8 bytes.
The second word is the type byte anded with $8F to remove the cpu#. The
third word is an index which may have any value and serves, in conjunction
with the type value, to identify what is controlled to the co-processor cpu.
Now the message queue to a co-processor is more general than this use for
analog control. Other message types may be passed to the cpu by the use of
setting commands that use listype #45. The type word used in those messages
should not conflict with those used here. (One should not use listype #45 to
send the same message as is used for analog control, because the setting word
associated with the analog channel will not get updated.) An easy way to
insure there is no conflict is to use type word values ≥ $100, since these
analog control messages use index words ≤ $8F.

addr0 C —

Unsigned 12-bit D/A (in short I/O space)
The addr is assumed to be in short I/O space. The data word is clamped to

zero if negative.

0 D address of board

Burr-Brown MPV904 12-bit D/A board
The address is mapped into 32-bits by the same scheme used in type #5.

The data value is converted to complement offset binary and right-justified to
match what the board expects.

Analog Control Types Sep 22, 1989 page 5
0 E ptr to command blk

1553 D/A (16-bit)
This is the same as type #8, but knob control sensitivity (as used with

listype#7) is based upon 16 bits rather than 12.

addr0 F code

AMD9513 timer (32-bits from pair of channels)
The addr is taken to be in short I/O space. The code values are of 4 types:
0x Coarse channel
1x Fine channel
2x Clock event selection
3x Clear all events
The x nibble is used to identify the timer channel (0–7 range) that is to be

controlled on the clock timer board. More details on this can be found in the
document entitled “VME Clock Timer Board.”

$1 0 ptr to memory

Memory byte (single byte no shift)
The lo byte of the data word is written to the given address (mapped to 32

bits using the type #5 scheme).

addr$1 1 shift

Memory byte (single byte w/ shift in short I/O space)
The shift count is used to right shift the data word before writing the lo

byte to the given address which is assumed to be in short I/O space.

Auto-page on Demand
Do it now!
Jul 6, 1989

Introduction
The Local Station software current supports auto-page application

invocation. Associated with each display page is a set of auto-page parameters
consisting of a “next” time, a “delta” time and a time-out value. The time
parameters are in units of minutes. The “next” time, expressed as yr-mo-da-
hr-mn contains the time of the next (automatic) invocation of that page. The
“delta” time, expressed as hr-mn, will be added to the current time to produce
a new “next” time when the application terminates.

The time-out can optionally force the program to terminate after a period of
time up to four minutes. If the time-out period is less than 17 seconds, the
current display contents are printed out the serial port upon termination.
This allows hard copy records to be produced from programs like the
parameter page which have no automatic actions.

When the program does terminate, the page that was “interrupted” is recalled
for execution. It won’t return to its original state, but it will at least reappear.
In the case that another page is also due to be called up, then it will be
invoked first before recalling the “interrupted” page.

Demand page invocation
For handling the measurement of the D0 detector argon temperatures and

purity monitor, it is desired for the host to be able to request the
measurements to be made at times which only the host can determine. The
test beam work utilized the afore-mentioned auto-page mechanism to
typically make the measurements every ten minutes on a time-of-day basis.
For the final experiment, we need to do this upon demand of the host.

An easy approach to providing this is to utilize the present auto-page
mechanism to do the hard part. All we need to do is to set in the current time
as the “next” time for the given page upon receipt of a special setting from the
host. The auto-page mechanism will take over and arrange to run the
program as requested. The data of the “setting” can be used to set the time-out
value. (See below.) While this may appear to usurp the auto-page ability for
the given page, it is probably good that it does. If it didn’t, we would need to
define what happens when the auto-page time comes up while the page’s
program is executing under host control. This scheme means that programs
which are run upon demand will not be run via periodic auto-page.

Parameter passing
It may be useful to pass parameters to the application that is invoked.

Auto-page on demand Jul 6, 1989 page 2
screen. And often the program retains some of such values in its page-private
memory. For each display page, there is a small (currently 120 bytes) private
“file” available for keeping such values between invocations of that page. The
parameter page, for example, uses this area to keep its current list of channels.
In this way, a single copy of the parameter page program can serve many
display pages using a different set of channels in each.

This page-private memory can be used to house a record structure that can be
used for communications between the host and the application program. The
host has access to this same block of memory using listype #33. Parameters
can be written there, even before the application is invoked upon demand,
Status and progress information that is generated by the application can be
monitored by the host. A key could be stored there to verify whether the
intended application was running. Error conditions can be reported to the
host as well. There is no restriction imposed upon the layout of this structure
by the Local Station software; it is organized by arrangement between the
application program and the host program.

The host program could check the page’s display title to verify whether the
page is installed with the expected program. Or, it could merely assume that
the page that is used for the program is fixed. It may as well be fixed, as the
page number is the ident that is stored in the database anyway; it doesn’t need
to be known to the host program but only to the database.

Time-out values
The significance of the 2-byte time-out values used in the invocation

setting are as follows:
255 Forever
16–254 1–239 seconds (value-15)
1–15 1–15 cycles (.06 – 1 second @ 15Hz)
0 Inactive

Data Access Table option
Thu, Aug 17, 1995

This option is designed to capture all Linac data readings on a single 15 Hz
pulse. One may specify an initial channel number, a number of channels,
and an enabling Bit# and state. All analog channel readings in the range
indicated are copied into the 8th word of the 8-word ADATA table entries.
Listype #28 can be used to request this data using a CHAN ident. The data
will remain available until the next time data needs to be captured.

The enabling Bit# might be the beam status bit, for example. This would
capture all analog readings on every Linac beam pulse. To make it useful, a
host would have to request all this data before the next Linac beam pulse.
This would be very difficult to do at 15 Hz. A host program that needed to
collect a subset of such data, however, might be able to do it.

RDATA entry format

2 D 0 0 chan#

#chansBit#

—

—

state

time

The time word is a diagnostic result that shows the time required to
execute this RDATA entry in 0.5 ms units. On a 133A board (68020), the
time to do this copy for 1024 channels is 1.0–1.5 ms.

ADATA entry format

setting

capturedmotor countalarm countalarm flags

reading tolerancenominal

 Composite Digital Status Words
Acnet adaptations

Nov 13, 1991

Digital data: Local station vs Acnet
The local station software provides access to digital status by Bit#, by Byte#,

and by Chan#. The latter uses the associated digital status and control fields in
the analog descriptor to provide the parameter page on/off and reset support.
Binary alarm scans are made based upon the individual Bit#, so an alarm directs
attention to a single bit.

In contrast, Acnet treats a device as including both the analog channel reading
and a digital status word reading. An alarm can refer to either the digital status
or the analog reading of a single device.

Local station planned changes
Two schemes are planned as additions to the local station. The first is the

feature of building words of digital status and assigning them to pseudo analog
channel reading words. With a new flag bit in the analog alarm flags word, the
analog alarm scan logic is modified to treat the nominal and tolerance words not
as numbers, but as a nominal bit pattern and mask. In this way, a set of bits (in
the reading word of an analog channel) can produce a single alarm message.

A second scheme is one of enhancing the current associated status and control
support to collect up to 8 (or 16) bits of status together. This would permit
requesting such status, but it would not include alarm scanning logic on such
status. This note focuses on the first scheme.

The problem
The problem at hand is to find some way that combines these efforts into one

which can fulfill what Acnet expects and also what the local station expects.
These are the requirements:

1. Build status words by device.
2. Report single alarm for the status word.
3. Report analog/digital alarms for single device.
4. Relate status word to analog channel and vice versa.
5. Support multiple digital controls for single device.
6. Provide text for each status word bit.
7. Provide state text for each status/control bit.
8. Support named status word if no related analog channel.

The solution
Suppose that associated status words are constructed each cycle and written

into “reading” words of pseudo-channels, according to the first scheme. Also,
suppose that a word in the pseudo-channel’s analog descriptor refers to an

Composite Digital Status Words Nov 13, 1991 page 2
be used to construct the EMC for the alarm system.

If these status words are used in the alarm scan, they must be built each cycle,
not merely upon a user’s request. This implies that it is good to do this efficiently.
A table of instructions that describe how to do this efficiently can be interpreted
by an offline database uploading utility program in the same way that it is
interpreted by processing the data access table in the local station system in order
to discover which raw status bits occupy positions in the composite status word.

The data access table entry that supports this assembly of status bits is as follows:

2 6 0 0 targetChan

CStat entry#— #chans

—

The “targetChan” is the first analog channel whose reading word is to be filled
with combined status bits. This word will be accessed using the Basic Status
property of the central database. The “CStat entry#” is the entry# in the CSTAT

system table that contains the list of 4-byte specifications that describe how to
assemble the bits together for the first target channel. The system table directory
specifies what is the maximum size of each list and hence the offset from the start
of one list to the next. The “#chans” word specifies the number of resulting
composite status words to be assigned to consecutive channel readings and also
the number of lists that are to be interpreted.

If we assume that lists need no more than sixteen 4-byte specifications, as there
are only 16 bits in a word, then the stepSize parameter could be 64 bytes. But in
practice, it is likely that much fewer than 16 specifications will be needed, as one
specification can operate on multiple bits occurring in a raw status byte. One
might choose a list size of 32 bytes, for example, to permit up to 8 specs each.

Composite Digital Status Words Nov 13, 1991 page 3
The format of one 4-byte specification is as follows:

EOR

Byte# shift mask

1 1 6 8

complement

The Byte# refers to the raw status byte read by the usual “0405” data access table
entry. Raw status byte values are placed into the BBYTE table (#5) by that entry.
The mask is applied to the status byte reading as it is positioned in the lo byte of
a word with zero in the hi byte. This word is shifted left by the amount of the
shift. To shift right, use (16–shift), since it is actually a circular left shift.

The two option bits allow a complement of the status byte before masking
and/or the use of exclusive-OR logic rather than the default inclusive-OR for
combining the results of multiple 4-byte specs in a list into one composite status
word. These two options should not be used for filling these composite status
words in channel reading words, because they will complicate the job of
uploading bit-based text to the central database. They are included for use in
building composite status bytes that are placed into table #5 by using $2605 in
the data access table entry, rather than $2600. (Table #0 is the analog data table.)
In that case, new status bit text can be entered, and such new bits can be further
combined into channel reading words as above. The whole matter of these two
option bits can be considered an advanced topic that is unneeded for awhile.

In forming these 4-byte specs, the Byte# word must have a value in a valid range.
The value zero is not considered valid, even though Byte #0 exists. The reason is
that it is likely that many spaces reserved for specs will be unused and left zero.

It will take some care in devising the appropriate specs, but that is the nature of
what is needed for doing the job of constructing these composite status words.
Interpretation of the specs is expected to be quite efficient, which is desirable as it
has to be done at 15 Hz.

Note that a single bit can be used as a composite status word in a trivial way
using only one spec. This can give that bit an Acnet-style name. Raw status bits
in a local station do not currently have names a priori.

To relate a composite status word “channel” to a real analog name, one could use
the family word in the analog descriptor for that purpose. Alternatively, special
(but similar) names can be defined for these composite status words.

 Data Access Table Formats
Data pool preparation

Thu, Jul 25, 1996

Introduction
The Data Access Table is used to specify what happens within a station every

cycle to prepare the data pool. Included in this is a mechanism for executing all
enabled closed loops and server code. At the start of a periodic cycle, the Update
Task is executed. As part of its work, entries in the DAT are processed from
beginning to end. Each entry is an "instruction" to be interpreted before moving
on to the next entry/instruction. The generic pattern of such entries is as follows,
shown as 8 (16-bit) words:

type# table# entry# memory ptr

other info step size count

The hi byte of the first word specifies the entry type#. The lo byte of the first
word is a system table# if it is in the range 00–1F. The meanings of all other fields
depend upon the entry type#. The above layout of these entries is only an
example. Normal entry type#s are positive integers in the range 01–7F. Entry
type#s of 00 or in the range 80–FF are invalid and are ignored during DAT
processing. Entry type 7F is the condition entry.

The table# is normally either 00 (for the channel entries in the Analog Data
Table) or 05 (for the byte entries in the Binary Data Table). The entry# is the entry
of the first data word targeted. The data words are copied into successive entries
of the destination table when a count is specified. Most often, the entry# is a
channel#. Some types use an address pointer which provides a hardware board
address or other memory pointer. The 7th word is often a step size when a
memory ptr is used. The count word is usually a loop count of the number of
consecutive channel readings (destination table entries) to be filled.

Condition entry
Entry type 7F is a special entry that is used to enable/disable an internal flag

that determines whether a non-7F entry is processed or skipped. At the
beginning of DAT processing, this internal flag is initialized to disabled, so that a
7F entry must occur before any non-7F entries will be interpreted for processing.
The only result of processing a 7F entry, which by definition is never disabled, is
to enable or disable the internal flag that determines whether a subsequent non-
7F entry will be processed. The format of a 7F entry is as follows:

7 F 0 0 period phase

lower bit#/chan# upper

counter

state
0=bit#, 1=chan#

At its simplest, this entry merely specifies the period word in cycles. For

processing every cycle, use 1. Such is typically the first entry in a DAT. If
processing is desired every other cycle, use period=2. The other options allow for
enabling the internal flag based upon the state of a bit, or the value of an analog
channel being inside or outside a specified range. For more information, see the
document RDATA Periodicity.

Overview
As an overview of the entry types available for use as DAT instructions, here

is a list by type#:

01 Multiplexed A/D used by Linac
02 (n.u.)
03 Read memory words by bytes
04 Read binary bytes via address list
05 Shift data words
06 Adjust nonlinear RF diode readings
07 Zero-data pedestal adjustment
08 Compute ratio
09 Compute product
0A Compute sum
0B Compute difference
0C Process 1553 command list
0D Auto-setting from memory
0E Wait, post-process 1553 data
0F Average sequence of readings
10 (n.u.)
11 Analog Devices A/D board
12 Sample datapool
13 Read memory words by words
14 High Voltage Digitizer (obs)
15 Beam status counter
16 Capture data on selected cycles (obs)
17 Timer channel clock event counts (obs)
18 Timer channel clock events (obs)
19 AMD9513 timer delays (obs)

1A Read single bytes of memory
1B Read words—mask,shift,BCD options
1C Read clock events from clock board (obs)
1D Invoke local applications
1E Insert data into memory words
1F De-multiplex data words
20 Send data request to SRMs
21 Wait for SRM data reply
22 Map SRM data into data pool
23 (n.u.)
24 Compute counter differences
25 Copy setting word
26 Assemble combined status words
27 Copy memory into data stream
28 Copy from IRM A/D circular buffer
29 De-multiplex binary data bytes
2A Copy words memory-memory
2B Copy bytes memory-memory
2C Copy FIFO to memory
2D Save all readings in present cycle

Some entry types access data from various hardware interfaces. Some modify
data already collected in various ways. In particular, entry 1D allows for
processing all local applications, some of which may generate output data for
inclusion in the data pool. Much of the particularization, or configuration, of a
station stems from the design of its data access table entries.

Editing DAT entries
Armed with the detailed specifications, one can enter DAT entries using a

memory dump page. If this is done, one should take care, as the DAT is scanned
every cycle, so it is "live." As changes made in this way are usually made one
word at a time, it may be wise to disable an entry while it is being modified, say
by setting the $80 bit in the type# byte. Remove this sign bit when the rest of the
entry is ready. This form of raw editing of the DAT is not for the squeamish.

Data Access Table Formats Mon, Aug 26, 1996 page 2

Another means of editing the DAT is provided by a Unix tool called xxxxx. It
operates by reading up the entire DAT and producing a text file version of it,
which is then edited and downloaded all at once. See document xxxxxx.

DAT entry formats
A brief description follows for each DAT entry type, grouped into related

types. In some cases, additional details can be found in other related documents.

Accessing memory data

Read memory words by bytes

0 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by bytes) starting at the memory address given,
advancing by the step size for each destination table entry (chan#). If the memory
ptr refers to data stored in consecutive words, the step size would be 2.

Read memory words by words

1 3 0 0 chan# memory ptr

— step size count

Words are copied (accessed by words) starting at the memory address given,
advancing by the step size for each destination table entry (chan#). If the memory
ptr refers to data stored in consecutive words, the step size would be 2.

Read single bytes of memory and convert to reading words.

chan# memory ptr

step size—

1 A 0 0

mask shift count

For the range of selected channels, read a byte from memory, apply an optional
mask, shift an optional amount and use the resulting 16-bit word as a reading. If
the mask is zero, no masking will be applied. If the shift count is negative, a right
shift of (–shift) bits is indicated, starting from the data byte positioned in the hi

Data Access Table Formats Mon, Aug 26, 1996 page 3

byte of the word and zero in the lo byte. If the shift count is positive, a left shift of
that many bits is indicated, starting from the byte positioned in the lo byte of the
word and zero in the hi byte. The step size is used to advance the memory ptr
when more than one byte is accessed (count > 1).

Read memory words (by words) with mask, shift, BCD options

chan# memory ptr

step size

1 B 0 0

mask countflags shift

Copy words of memory (accessed by 16-bit read cycles) into consecutive channel
readings. Apply optional mask (0 treated as $FFFF), optional shift (positive=left,
negative=right, zero=none), and optional BCD-to-binary conversion (flags=$80 to
enable conversion). The step size advances memory ptr for count words.

De-multiplex data words

1 F 0 0 chan# memory ptr

step size count— mpxChan

De-multiplex words of memory data according to the value of the mpxChan. The
value of mpxChan, for example, may range from 0–F on successive cycles. Data
from memory (count words using step size) is copied into the readings of
channels numbered from (chan#*mpxValue) to (chan#*mpxValue + count – 1). This
is useful when the hardware interface furnishes multiplexed data according to a
value supplied on digital control lines. Type 1E may be used to place the proper
value on the control lines.

Insert data into memory words

mpxChan memory ptr

step size

1 E 0 0

mask countshift

Sample masked value from mpxChan and insert into memory words. The reading
of mpxChan is masked by mask and left-shifted by shift bits (rotated as a 16-bit
word, so use 16–n to shift right) and inserted into the target memory word(s).
The bits outside the mask in the target word(s) are not modified.

Data Access Table Formats Mon, Aug 26, 1996 page 4

Compute counter differences

2 4 0 0 chan# memory ptr

targBit# countmemory step size

Monitors memory word counter differences. This can be used to monitor
whether an associated cpu in the same VME crate is still working by watching a
counter word at memory ptr that the cpu increments regularly. Optionally, if
targBit# is nonzero, a bit# can be set if the difference from last time is nonzero,
and cleared if the difference is zero. When count > 1, additional memory counter
addresses are obtained from using memory step size, and successive bit#s are
used when targBit# is nonzero. The memory of what the word read last time is
retained in the setting word of the associated target difference chan#, so such
channels cannot be settable.

Copy setting word

2 5 0 0 chan# —

— offset count

Copy setting (or other) field values into reading fields of successive analog
channels. The offset value is the offset to the required field in the ADATA table
entry relative to the reading field. Use offset = 2 for setting field values.

Assemble combined status words

2 6 0 0 chan#

— template# count

—

Assemble words of status from collections of bits found in the BBYTE table, using
templates found in the CSTAT table #24. Each status word is built from a template
found in this table. The reading of chan# is built from template#, and the process
is repeated for successive channels and templates according to count. The
template is an entry from the CSTAT table, each of which consists of up to 8
specifications of 4 bytes each. Each specification is a Byte# word, followed by a
shift count byte and a mask byte. See document Composite Digital Status for
more details.

Data Access Table Formats Mon, Aug 26, 1996 page 5

Copy memory blocks into data stream

2 7 0 0 dStream# memory ptr

#bytes countmemory step size

Copy a block of memory of size #bytes from memory ptr into a data stream with
index dStream#. The beginning of the record written contains a 16-byte header
with the following format:

Yr Mo Da Hr Mn Sc Cy ms

memory ptr —

This header includes the time-of-day the record was written, followed by the
memory address from which the block was copied. If count > 1, then multiple
blocks of memory can be so captured, each including a header. In this case,
subsequent block source memory addresses are derived using the memory step
size. The data stream should be defined in the DSTRM table to have records whose
size reflects both the header size and the data block size. For example, if 1024-
byte blocks of memory were to be captured into a data stream, the data stream
record size as defined would be $410. The time-of-day format is BCD, except for
the ms byte that holds the residual milliseconds of the present cycle. The Cy byte
ranges from $00–14, indicating the present 15Hz cycle.

Access to specific hardware interfaces

De-multiplex binary data bytes

2 9 0 B byte# memory ptr

— initMpx count

This entry assumes a simple hardware interface for multiplexing binary data
bytes. The memory ptr is the address of a multiplexed data byte; memory ptr+1 is
the address of the multiplex select byte. The initMpx is the initial value of the
multiplex select byte; subsequent values are merely incremented from that. The
byte# is the initial entry used in the BADDR table for obtaining the target
addresses for the data byte read from the multiplexed data byte. This simple
multiplexing scheme may be used to bring in many digital data bytes using only
two bytes of I/O interface. (Each IRM, for example, includes an interface to eight
bytes of digital I/O. In the Fermilab Booster HLRF system, two of these bytes are
used in this scheme to bring in 16 bytes of multiplexed digital status.)

Data Access Table Formats Mon, Aug 26, 1996 page 6

Multiplexed A/D used in Fermilab Linac

0 1 0 0 chan# memory ptr

firstChan count— delay

This entry accesses A/D data as interfaced via the original multiplexed A/D
system in use at the Fermilab Linac. The SRMs have since been used to read this
data, so this entry is no longer needed.

Read binary raw data bytes

0 4 0 5 byte# memory ptr

— — count

An array of byte addresses (usually the BADDR table) specified by memory ptr
contains pointers to consecutive bytes of binary status data. They are treated as
memory-mapped data bytes unless the high byte of the address found is $80, 81,
or 82, which carry special significance. [If the high byte is 80, the entry is
assumed to be a pointer to a 1553 data byte in a 1553 command block on the 1553
controller board's memory. If the high byte is 81, the next byte is an SRM address,
and the last two bytes is the control value needed to be sent to the SRM for setting
the byte. If the high byte is 82, the next three bytes specify parameters needed for
PLCQ message queue processing.] In other cases, the 4-byte entry is a memory
address that is accessed to obtain the data byte stored for the byte# given (in the
BBYTE table). The number of successive entries filled in BBYTE is given by count.

Process 1553 command list

0 C 0 0 chan# 1553 command blk ptr

— step size count

0 C 0 5 byte# 1553 command blk ptr

— step size count

Data Access Table Formats Mon, Aug 26, 1996 page 7

The pointer is used to process a sequence of 1553 command blocks, each of which
executes one 1553 command. Each command may result in up to 32 data words
transferred. The count word in this case indicates the number of command blocks
to be processed. For each word read by a command block, a new reading is
stored in consecutive channels. In the binary data case, with the table#=5, each
word read produces two consecutive bytes of binary status readings. Separate
queues are maintained of commands awaiting execution by multiple 1553
controllers. The interrupt following completion of one command passes the next
command, if any, to the controller.

Wait, post-process 1553 data

0 E 1 1 ctrlr# —

— timeout count

Wait for the 1553 interrupt activity to complete. Systems which do 1553 I/O with
interrupts allow overlapping of multiple 1553 controller activity during DAT
processing. This entry must be used to wait for all the readings which have been
queued up for interrupt-driven acquisition to finish. This post-processing of 1553
data collection also copies the data into the readings field of the ADATA table, so
that this entry must be included. The timeout word specifies the time within the
cycle (in 0.5 ms units) after which to give up awaiting all controllers in the range
specified by ctrlr# and count and continue DAT processing of any remaining
entries.

Analog Devices A/D board

This is the driver for a VME digitizer board from Analog Devices.

1 1 0 0 chan# memory ptr

— hdwChan# count

Here, memory ptr is the base address of the board. and hdwChan# is the initial
hardware channel select.

Data Access Table Formats Mon, Aug 26, 1996 page 8

Send data request to SRMs

2 0 0 0 — —

#bytes —SRMnode# reqType

Smart Rack Monitors (SRMs) are used in the Fermilab Linac. As many as 5 SRMs
are connected via ARCnet to a single VME station. This entry sends out a request
message for data to be returned from an SRM. The SRMnode# is usually $7A00,
specifying broadcast to all SRMs. The reqType is $2201 in the case of requesting the
SRM to read and return all its normal cycle data. The #bytes specifies the
maximum size of the return data buffer. This DAT entry does not wait for the
response from the SRMs. That function is specified using the next entry. For more
details, see the document SRM Message Protocols.

Wait for SRM data reply

2 1 0 0 — —

—SRMnode# —deadLine

Await responses from a specific SRM. The deadline word specifies the maximum
time within the current cycle to wait, in 0.5 ms units. In response to a broadcast
request, the order of SRM responses is not determined. But the system's SRM
support knows which have responded since the request was sent. It is necessary
to place this DAT entry before any $22 entries that refer to the same SRM node#.
See the document SRM Message Protocols for more details.

Map SRM data into data pool

offset

2 2 0 0 chan# —

countSRMnode# table#offset

offset

2 2 0 5 byte# —

countSRMnode# table#offset

These entries process the already-received response data from an SRM and copy it

Data Access Table Formats Mon, Aug 26, 1996 page 9

selectively into the data pool. The table#/offset word identifies the SRM data
segment of the response buffer that is to be mapped to the channel or byte data.
See the document SRM Message Protocols for more details.

Copy from IRM A/D circular buffer

dlyChan#

2 8 0 0 chan# register base ptr

countextScan —

The IRM analog IndustryPack board maintains a 64K-byte memory that is
updated by the hardware with 64 channels of analog input digitized and stored
every millisecond. There is room for 512 samples of such data, covering about 0.5
second of time. This entry usually copies the most recently-digitized set of 64
readings into the data pool. If dlyChan# is nonzero, it backs up to a time within
the current cycle given by the reading of the indicated channel. If extScan has the
least bit set, it causes the A/D interface to use an external trigger for its digitaizer
scan. This option is needed for the PET project, where the scan rate is 360Hz
rather than 1000Hz. The register base ptr refers to the analog IP board's register
address. It is usually FFF58300.

Modify/compute data already acquired

Shift data words

0 5 0 0 chan# —

— shift count

Shift reading fields of a sequence of channels. If shift is negative, right shift
reading word with sign extension. If shift is positive, left shift reading word with
zero fill. This has been used to adjust 12-bit A/D readings based on a 2.5 volt
scale so that they appear to come from a 14-bit A/D with a 10 volt scale. This is a
replace operation.

Adjust nonlinear RF diode readings

0 6 0 0 chan# memory ptr

stepSize count— shift

Data Access Table Formats Mon, Aug 26, 1996 page 10

Certain RF amplitude and power readings encountered in the Fermilab Linac
system were measured by detector diodes and therefore have nonlinear
characteristics. This entry linearizes the readings so they can be linearly scaled in
higher level programs the same as any other analog channel readings. Channels
in the indicated range from chan# to chan#+count-1 were linearized according to
one of two formulae if specified by flags in the "conversion flags" field of the
analog descriptor. Flag bit#3 specifies that linearization is to be performed; bit#0
specifies either gradient (0) or power (1) linearization algorithm. If stepSize is
nonzero, the nonlinear data is taken from memory beginning at memory ptr
rather than from the present reading field of the target channel. The shift word
specifies a shift applied to the raw data word before linearization. See document
xxxxx for more details on the linearization algorithms used.

Zero-data pedestal adjustment

0 7 0 0 chan# —

beamBit count— noBeamState

Perform automatic pedestal subtraction for selected channels in the target range
specified by chan# and count. If beamBit is nonzero, it is an optional beam status
bit whose no-beam state is given by the sign bit (bit#15) of noBeamState.. If
beamBit is zero, the default beam status Bit# (009F) and no-beam state ($8000)
will be used. Each channel to be so treated must be indicated by the appropriate
flag bit set (bit#2) in the "conversion flags" byte in the analog descriptor. The
result of this logic is that readings read exactly zero, by definition, for cycles in
which there is no beam. The pedestal value is kept in the setting word of each
channel so treated, so the channel cannot be settable. It may, however, have
motor control, since motor-controlled channels do not have setting values. In
order for the beamBit status to be valid, this entry should occur in the DAT after
the type 04 entry that updates the BBYTE table with binary status bytes.

Capture data on selected cycles

1 6 0 0 chan# —

bit# count— bitState

Scan the readings of a sequence of channels and capture the reading values for
each channel in the range that is marked to need this treatment in its analog
descriptor via bit#1 of the "conversion flags" byte. The capture is done on cycles
when the status bit# matches the bit state given (in the sign bit of bitState);
otherwise, the captured reading is copied over the current reading, thus

Data Access Table Formats Mon, Aug 26, 1996 page 11

preserving the reading that had been captured before. In systems with channels
whose data is valid only during some selected cycles, this entry allows
preserving only valid data readings in the local data pool. When a host computer
requests data from such channels, it will find only the most recent valid readings
there. If it is necessary to also have the current readings, another channel with a
copy of the same channel's reading could be set up normally. The captured data
values are written into the 7th word of an ADATA entry. Note that motor control
cannot be used for such channels, since that same word is used as a motor
countdown word in that case.

Save all readings in present cycle

2 D 0 0 chan# —

— bit# count

For the range of selected channels specified by chan# and count, capture the
present reading fields into the 8th word of the ADATA entries. The bit# word
specifies in the lo 15 bits the status bit# that determines whether this capture
operation is performed. The state is indicated in the ms bit of this same word.
After capture, a host may want to retrieve these values using the listype# defined
for accessing the 8th word of an ADATA entry—before the next occurrence of the
same status bit state.

Sample data facility

1 2 0 0

— offset

Ptr to SAMPL table—

— —

From parameters stored in the SAMPL table, copy a set of channel readings from
the local station to memory (especially on the Vertical Interconnect). A table is
built containing pairs of words, each of which has a channel# word followed by
the data value word. Additional details on this are found in the document
Sample Data Facility for VME Stations. This was used by D0 in the "early days."

Data Access Table Formats Mon, Aug 26, 1996 page 12

Compute ratio

0 8 0 0 chan# —

numerator denominator— threshold

Compute ratio between two analog channel readings, where numerator and
denominator are channel#s, and theshold is the value of the denominator channel
such that, if the absolute value of the denominator reading is below it, the result
chan# reading will be zero; otherwise the result will be numerator/denominator
expressed in volts; i.e., if the readings are equal, the result will be one volt, or
$0CCC. The standard full scale range is 10 volts. If an overflow results, use +/–
full scale, as appropriate.

Compute product

0 9 0 0 chan#

chan1 chan2— shift

offset1 offset2

Compute product of two channels chan1 and chan2, and scale by shift. The
complete formula used is:

(chan1.reading–offset1)*(chan2.reading–offset2)*2^shift
Note that the values of the two offsets are constants, not channel#s.

Compute sum

0 A 0 0 chan# —

— chan1 chan2

Compute sum of two channels chan1 + chan2. Divide result by 2 in order to
prevent overflow. As an example, if the full scales of two readings were both
100.0 amps, then to derive a chan# reading that is the sum of the two, the full
scale of the result channel should be 200.0 amps.

Data Access Table Formats Mon, Aug 26, 1996 page 13

Compute difference

0 B 0 0 chan# —

— chan1 chan2

Compute difference of two channels chan1 – chan2. Divide result by 2 in order to
prevent overflow. As an example, if the full scales of two readings were both
100.0 amps, then to derive a chan# reading that is the difference of the two, the
full scale of the result channel should be 200.0 amps.

Average sequence of channels

0 F 0 0 chan# —

— firstChan count

Average the sequence of channel readings from firstChan to firstChan+count–1
and place the result in the reading field ofchan#.

Beam status counter

1 5 0 0 chan# —

firstBit# count— states

Produce counter readings in target channels by sampling bit# states of sequential
status bit#s. The first bit state, to be compared with the firstBit# status, is in the
sign bit of the states word. Successive status bit#s are compared to successively
lower-numbered bits in the states word. This naturally limits count to 16. When a
status bit matches the indicated state, the counter is cleared; when it differs, the
counter is incremented. One use of this would be to build a channel whose
reading is a counter that measures the #cycles since the last beam cycle. This
feature is described further in the document Monitoring Counters.

Data Access Table Formats Mon, Aug 26, 1996 page 14

Copy words memory–memory

2 A 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory words from source memory ptr to destination memory ptr. The
step size is used to advance the source memory ptr. If the source words are
consecutive, then step size = 2.

Copy bytes memory–memory

2 B 0 0 chan# source memory ptr

step size countdestination memory ptr

Copy count memory bytes from source memory ptr to destination memory ptr. The
step size is used to advance the source memory ptr. If the source bytes are
consecutive, then step size = 1.

Copy FIFO to memory

2 C 0 0 chan# first FIFO address

step size countelapsedTime #words

Copy FIFOs contents into memory. The count word specifies how many FIFOs to
read out. The #words specifies how many words to read out from each FIFO. The
step size is used to advance to th next FIFO address. The destination address is
found from the analog control field of each chan# in sequence. Such channels
may be called waveform channels. (This method was used for the first version of
the swift digitizer IP module. A later version added memory to the board so that
readout of the FIFOs by the CPU was no longer necessary.)

Data Access Table Formats Mon, Aug 26, 1996 page 15

Miscellaneous

Auto-setting from memory

chan#

0 D ltype# bit# memory ptr

countnode# step size

Memory words are copied as setting data, where the channels to be set are
consecutive starting at chan# in node#. This is a way to turn memory data words
into readings in another station, although it can, of course, also reference
channels in the local station by using the local node#. If the bit# (with state value
in the sign bit) is nonzero, it conditions the setting action upon the state of the
indicated status bit.

Invoke local applications

1 D 0 0 — —

maxDelta —initTime deltaTime

Scan all entries of LATBL (local application table) in sequence. For each entry that
is enabled, call the named local application, including the appropriate value for
the call type: initialize, terminate, or cycle. In this way, every enabled local
application is invoked every cycle, giving it a chance to perform whatever it
needs to do on that cycle. Every LA instance must specify an enable Bit# as the
first parameter in its LATBL entry. When the bit is set, the instance is enabled. The
three time word indicated above are diagnostics, all in 0.5 ms units. The initTime
word is the time of starting this DAT entry within the current cycle. The deltaTime
word is the total cpu time used by all the enabled LA's this cycle. The maxDelta
word is the maximum value of deltaTime ever. Since this DAT entry executes
closed loops, it is usually one of the last entries in the DAT, so that it has access to
the latest values in the data pool.

Data Access Table Formats Mon, Aug 26, 1996 page 16

$1 C nMax boardAddrtargetChan0 0

rstEvt #chansbitMapPtr

DS#

flags

Three jobs can be done by this entry with the clock event data. Clock event data
is written to the Clock Event Queue (as a data stream). A range of analog channel
readings is updated with the most recent time-stamps for the corresponding
events (starting with event $00). A bit-map is updated with bits set to indicate the
occurrence of the same range of clock events.

The targetChan is the base channel number of the range used to hold the time-
stamp data, likely with the option enabled to store these time-stamp data relative
to the time of the cycle reset event. The nMax byte is the maximum number of
times the hardware fifo is read while processing this entry. The DS# byte is the
data stream index used to identify the Clock Event Queue data stream according
to the DSTRM table. The boardAddr is a word that gives the Clock Decoder
boards fifo address in VME Short I/O space.

The bitMapPtr is a pointer to the base of the bit-map array which contains bits
set to 1 whenever the corresponding event occurs. The bit-map may optionally
be cleared at cycle reset time. The flags byte includes the following options:

bit# option
7 1= enable cycle reset event logic
6 1= enable bit-map updating
5 1= enable bit-map clear upon cycle reset
4 1= longword bit-map array, 0= byte bit-map array
3 spare
2 spare
1 spare
0 spare

The cycle reset event# is specified by the next byte, used only if the cycle reset
event logic is enabled. The nChans word is the number of channels starting at
targetChan that are used to record the corresponding time-stamps for events in
the range 00n, where n= (nChans-1). It is also used to give the range of events
that are recorded in the bit-map table, if the bit-map is enabled.

Data Access Table Formats Mon, Aug 19, 1996 page 17

D0 Alarms
Local Station Implementation

Feb 5, 1990

New alarm message protocols are required for use by D0 in order to conform
with the “D0 CDAQ Network Data Transmission Protocol” document by Alan
Jonckheere. Alarms messages are assumed to use Acnet header-style messages
designed by Charlie Briegel on the token ring network. This document
describes the implementation of D0 alarms in the Local Station software.

Device Information Blocks
Alarm parameters must be downloaded from the D0 Host to assist the

Local Station in building the alarm messages that are required. This allows
the Host alarm processing to avoid accesses to its own Rdb database as much
as possible in the interest of execution efficiency.

There are three types of alarm messages—analog, binary and comment. For
each there is a Device Information Block that must be downloaded in the
following format:

pri 00

device name—16 characters

subsystem

path

Hdb database id

Three new system tables are used to contain these parameters for the three
types of alarms. The tables numbered #21, #22 and #23 are named AADIB,
BADIB and CADIB, for Analog Alarm Device Information Block, Binary
Alarm DIB, and Comment Alarm DIB. Each is allocated 32 bytes/entry to
include the 30 bytes above preceded by a word used to keep a date-of-last-
change for that table entry. (By preceding the DIB with this word rather than
following it, the name is kept quad-aligned in order to optimize memory
access for name searches.) The number of entries for each table is the same as
the number of analog Channels, the number of binary Bits, and the number
of Comments, respectively. New listypes support access to these tables both
for downloading and for reading access.

D0 Alarms Feb 5, 1990 page 2
parameters such as nominal and tolerance values are set. In this case, there
already exists an equivalent data structure in the current system. To support a
faç ade of the new structures, additional read and set type routines are used.
These routines allow access to the different structures used internally through
an interface that D0 specified. If the underlying internal structures change in
the future, then these routines can be modified as needed without requiring
changes at the Host level. (This approach might be compared to the
“methods” used in object-oriented languages.)

Local alarms display
To support display of local alarm messages, the Alarms Task passes the

current alarm message with the “used” bit set through OUTPQ for later
processing by QMonitor in addition to the D0-specific alarm message that is
queued to the network. When the Alarms Task receives a message from
another station (source lan-node not equal to its own) directed to the task
named ALRM, it allocates a memory block to contain the alarm message but
builds it in the classic form. In this way, the classic support for alarm message
encoding into ascii (for display on the bottom line of the local console or via
the local serial port) still works.

Comment alarm data
A new system table #10 named CDATA provides space for data associated

with comment alarms. This data includes a comment alarm flags word, an
alarm count, and the text to be used with the comment alarm message.

D0 Alarms Feb 5, 1990 page 3
LTT (Listype Table) changes

 listype# ident read# set# #bytes tbl#
 offset purpose

56 16 1 1 2 10 0 CDATA access
57 1 16 18 10 0 0 D0 Analog alarm ctrl
58 2 17 19 2 2 0 D0 Binary alarm ctrl
59 16 18 20 32 10 0 D0 Comment alarm ctrl
60 17 0 21 2 0 0 General resets
61 1 1 1 30 21 2 AADIB access
62 1 1 1 16 21 4 Analog name
63 1 1 0 0 21 0 AADIB date of last change
64 2 1 1 30 22 2 BADIB access
65 2 1 1 16 22 4 Binary name
66 2 1 0 0 22 0 BADIB date of last change
67 16 1 1 30 23 2 CADIB access
68 16 1 1 16 23 4 Comment name
69 16 1 0 0 23 0 CADIB date of last change

Ident type#s
16 Comment index
17 General reset index

Read type#s
16 Analog alarm flags, nominal, tolerance
17 Binary alarm flags
18 Comment alarm flags

Set type#s
18 Analog alarm flags, nominal, tolerance
19 Binary alarm flags
20 Comment alarm flags
21 General resets

New table#s
10 CDATA Comment Data Table
21 AADIB Analog DIB
22 BADIB Binary DIB
23 CADIB Comment DIB

 Family Alarm Messages
Displayed alarm message reduction

Mar 7, 1992

Introduction
The local station alarm scan logic was designed to scan all data for alarm

conditions at 15 Hz. This allows for potentially an enormous number of alarm
messages to emanate from any local station, to an extent that any alarm display
system can become overwhelmed. When the system being monitored is
operational, and no alarm messages are forthcoming, it is comforting to know
that the system is being watched very carefully, and nothing is being noticed that
is out-of-limits. But when the system being monitored is not operational, an
alarm screen can become so full that it is all but useless.

Various schemes have been suggested for overcoming this great disparity
between what a human can interpret and what the control system can report. In
the accelerator control system (Acnet), collections of devices are grouped
together, such that entire sets of devices can be included or excluded from the
alarm scan easily. In this way, a subsystem that is down for some period of time
can be excluded from the alarm scan so that it does not contribute to filling up
the alarm screen. Of course, the act of excluding a group of devices from the
alarm scan brings with it a responsibility of later on including them when the
subsystem is again considered operational.

This note discusses an idea that could be implemented in the local station system
to support inclusion/exclusion of sets of devices from the alarm scan. The idea
stemmed from an informal discussion with Harrison Prosper about reducing the
alarm congestion for the D0 control system, in which the local stations play a
major role. A special consideration for the D0 case is the slowness of access to the
Hdb database, based upon Rdb from DEC.

General idea
Define a group of devices known to the local station via its local database. A

control action is used to enable or disable the entire “family” of devices for alarm
scanning. This control action itself affects a family device which can be in the
alarm scan, serving to provide a alarm message reminder that the family is
excluded from the alarm scan. The opposite control action restores the alarm
scanning of the family of devices and also removes the reminder message.

Family Alarm Messages Mar 7, 1992 page 2
Details of how it works

Consider analog channel devices only. Each analog channel’s descriptor entry
has a “family” word field. The value of this field is a “delta” channel number
which, when added to the device’s channel number, produces the channel
number of the next member device of the family. The delta value can be positive
or negative; thus, one can define an entire circular chain of devices that constitute
a family. Beginning at any member of the chain, one can find all the members of
the family. To do this easily from another system, there is a listype (#49) which
can return the complete list of channel numbers of the family to which a given
channel belongs.

This family implementation was originally designed to bring together all
channels that relate to a V177 timer board; for example, a set of channels might
be used to hold a clock event number that is selected to trigger the delay whose
value is given by a different channel. It is limited in that there is only one family
word per channel; thus, a channel can belong to at most a single family.

This proposal uses the family word to define a group of devices for the purpose
of including or excluding them from the alarm scan. Due to the above limitation,
such groups of devices must be distinct; a channel cannot be part of two different
groups. Of course, family membership does not prevent any channel from being
excluded from the alarm scan. One would want to define such groups such that
they would normally all be included or all be excluded from the alarm scan.

The control action that would perform the group inclusion or exclusion could be
supported by a new analog control type designed for this purpose. Each such
family group of channels could include a special pseudo-channel that would be
the target channel used to perform this function. Setting the channel to a nonzero
value could cause the family members to be excluded from the alarm scan. The
analog control processing would involve following the family chain and
removing each such channel from the alarm scan, in such a way as to mark that
this has been done, by setting another alarm flag bit, say. The special channel
member, however, would not be removed. Also, its reading could be set to the
number of devices in the family which were marked as removed from the scan.
Its nominal and tolerance values could be set to 0, so that an alarm condition
results from performing the exclusion control function when any member of the
family is in the alarm scan.

Later, when restoration of the alarm scanning of the family is desired, a zero
value could be used to set the special channel. The family chain would again be
followed, and all channels which had been marked for temporary exclusion from
the alarm scan would be restored to inclusion. The reading word of the channel
would be set to zero, thus removing the alarm condition of the special channel. In

Family Alarm Messages Mar 7, 1992 page 3
As a refinement, the nonzero value used to set the special family channel could
be a limit of the number of channels to scan in the family. But this may introduce
an element of confusion that would be hard to recover from. Any nonzero value
should probably cause a complete scan of the family.

Digital case
What about the digital alarms? The above discussion only addressed analog

channels. Binary bits have no family word, so the same approach could not be
used. But there is recent support for composite status words, which could be
used to reduce the number of binary bit alarms. Collections of bits from up to 8
bytes can be grouped together into as many as 16 bits and assigned as the
reading word of a channel. The nominal and tolerance words of that channel are
marked to be treated by the alarm scan logic as a nominal digital pattern word
and a mask word, according to a bit in the alarm flags word. In this way, one can
get up to a 16:1 reduction in binary alarm messages.

In addition, these resultant channels can be included in the family assign ment
above, so they can also be included/excluded along with other analog channels.

Conclusion
The scheme presented here is not the fancy AI-inspired approach to trimming

down alarm messages that are displayed such that only the ones the viewer
wants to know will be displayed. But it can be easily implemented and can
reduce considerable alarm message congestion. It has a reminder feature so that
excluded groups are not forgotten. It is also potentially very fast, as the group
logic is managed locally. A host-level program would need to be written to
manage the definition and display of the family groups.

FTPMAN Fast Time Data Addition
Up to 1 KHz data from IRM

Thu, Jun 23, 1994

The interface for Acnet Fast Time Plots is the FTPMAN support that is
implemented by the local application FTPM in the local stations/IRMs.
Support of data collection at higher rates than the current 15 Hz requires
modifications to FTPM. This note discusses some of the problems and
solutions relating to these modifications.

Current fast data support
In order to provide fast data support for the Macintosh, or other

hosts using the Classic protocol, a new listype was developed that is
described in the related “Moderately Fast Data Collection” document.
Briefly, the listype uses an ident consisting of the channel# and event#.
This allows access to data with times reported for the data points that are
relative to a given event#, or to a given event# group. The internal ptr
format includes the event# information as well as the offset within the
64kb array on the analog IP board of the last point reported. The
requester’s #bytes parameter and the return period parameter are used to
determine the data point sample period. Data are supplied to the user’s
buffer mapped to this period. This scheme allows access to such data to
mesh with the normal Classic request protocol paradigm.

Current FTPMAN support
The current support is limited to 15 Hz data collection. Until the use

of the IP-based analog module in the IRM, no high speed data was provided
by the hardware. Data at 15 Hz is taken from the data pool. The code runs
at 15 Hz to capture this data and build up the answers for delivery at
periods of 1–7 cycles at 15 Hz. Note that this support is still needed in IRMs
for analog channels that do not come from the analog IP board. Derived
signals, or other software-generated data, and all settings, are still limited
to 15 Hz collection. The convention that is used to mark a channel in an
IRM for this high speed ability is the channel number range chosen.
Channels in the range 0100–013F are used for the analog board in slot d,
and channels in the range 0140–017F are used for an expansion board in
slot c. Channels outside these ranges are only accessible at 15 Hz. All
channels on 133 boards are limited to 15 Hz access.

Time-stamps for FTPMAN

All data used by FTPMAN must be time-stamped. Event# 02, an event
that occurs every 75 accelerator 15 Hz cycles, is used for this purpose. The
units for the time values in FTPMAN data are 100 µ s, so that an unsigned
16-bit word is enough to specify this time value, using the range 0–50000
decimal. The current support for 15 Hz data uses values for this relative

FTPMAN Fast Time Data Addition p. 2
more accurate time-stamps.

The Classic fast data support develops times relative to any clock event
decoded by the digital IP board, the latest version of which decodes all
Tevatron clock events—except the 07 event used for 720 Hz timing. A 32-
bit free-running 1 MHz counter is read every time an event interrupt
occurs and stored in a table of times and elapsed-time-since-last-such-
event indexed by event# 00–FF. This provides the basis for the precise
time-stamps needed for up to 1 KHz fast data collection. The hardware
measures all 64 channels over 800 µ s every 1000 µ s, digitizing a
channel every 12.5 µ s, allowing for analog multiplexer settling time and
digitization.

It is desirable to borrow as much from the current fast data support as
possible. The RFTData module is a “read-type” routine that supplies
answers to a data request for the special fast-data listype# 82 decimal. It
works from an array of internal ptrs that carry the information described
above. Its answer result is a base longword of time in 10 µ s units since
the chosen event, followed by the delta time between the last two such
events in the same units, followed by (data, time) pairs of words, where
the time values are relative to the initial longword in the same units. The
user is expected to compute the time values needed for a plot by adding
the base longword to the time word for each point. If the sum exceeds the
delta time value, subtract the delta time value, as it means the current
point occurred just after the latest event. This scheme avoids the need to
supply a longword time value for each data point.

In order to use this scheme for FTPMAN, we must modify the data values.
The internal ptr should always specify event 02, because that is the only
one used by FTPMAN. (Actually, the client plot package can plot data
relative to other events, but it demands only times relative to the 02 event
from the front end.) The point values for FTPMAN need to be in (time, data)
order, with the time word in 100 µ s units.

The internal ptr format is as follows:

ExtAns
EvtGrp

Evt#

ChBlk

FTPMan

OutOffset

Chan#

 flags

 8 8 16

The Evt# will always be 02, and the FTPMan bit will be set, so that the
RFTData routine will build the answer data in the proper format. The first

FTPMAN Fast Time Data Addition p. 3
data) order, where the time is in 100 µ s units. ChBlk selects which group
of 64 channels.

Memory allocation
In the 15 Hz version of FTPMAN, the Pascal built-in procedure New

was used, in which the memory allocated was fixed, sized for the
maximum of 5 devices and 7 points per device. This won’t work for faster
rates, because it would consume too much memory. But the Pascal New
procedure does not work for variable size allocations. The new plan is to
use Alloc, a function that takes an argument that is the number of bytes of
memory to allocate. Its complement function is Free.

Server
From the server’s point-of-view, one can compute the data pointer

structure based upon the number of data points that will be needed for
each device. The protocol allows for each device to have a different sample
period. The following formula will allow the server to compute the #points
for each device and therefore the amount of memory required in the reply
block for each device:

#points = (#cycles return period)*(1/15 second)/(sample period),

where the two times are in 10 µ s units. We use 1/15 second at Fermilab,
where FTPMAN is needed. We need to be sure that the server and the non-
server reach the same conclusions about the sizes of the data arrays, so it
shouldn’t depend upon the cycle rate of the server. This information can
be computed before the memory is allocated for the reply message block.
It can be placed into the reply block after the first continuous reply has
been sent.

Because the sample period can vary for each device, RFTData can be called
once for each fast data device. A fast-data device is one whose sample
period is significantly less than 1/15 second. It can only be supported if
the system is 162-based and has an analog IP board to support the fast
digitizations.

When the server node receives replies from the non-server node(s), it uses
the data pointers internal to the reply to find each device’s data. For each
one whose node# in the ident matches the node sending the data reply,
copy the number of points indicated into the area reserved for it in the
server’s reply buffer. The number of points expected by the server should
match the number of points indicated for that device in the non-server’s
reply message.

FTPMAN Fast Time Data Addition p. 4

Timestamps
Timestamps are given for each data point in 100 µ s units, as noted

earlier. For the 15 Hz data, this is done to 1/15 second precision using a
scheme of synchronization through the network. Since that
implementation, however, the FTPMAN client program has been changed so
it supplies a starting value for a 1/15 second timestamp with the request
message. When there is no analog IP board available, one may change the
FTPMAN server logic so it takes advantage of this starting point, counting 15
Hz cycles to supply timestamps for the duration of the request.

For fast data rates, however, one should do better than 15 Hz precision
timestamps. The digital IP boards that are a part of every 162-based
system provide Tevatron clock event detection such that accurate timing of
the 02 event is available. The timestamps are good to 10 µ s precision, so
they are more than adequate for the task.

Non-server
For each device that is local, produce the required data. Again, the

determination of the number of data points is done exactly as was done by
the server. Devices that are not local are skipped. The number of points of
data in the data pointers array may be zero. the server will ignore those
devices whose node#s do not match the request.

With the array of internal ptrs, the answers for each fast data device can
be updated with a call to the RFTData routine. But the data that results will
be modified for the FTPMAN format requirement of (time, data) order and
time words in 100 µ s units relative to the 02 clock event. The two initial
longwords produced by RFTData can be used for the modification logic, but
they will not be included in the data reurned by FTPMAN. It is logical that
FTPMAN should perform this modification, rather than RFTData itself.

Internal Ptrs
Data request object code

Oct 6, 1989

When a data request is initialized, the array of idents for each listype in the
request is “compiled” into an array of Internal Ptrs in order to more efficiently
update the answers. This translation is done even for a one-shot request.

There are two variations of data requests. The first is a data request that
originates from a Local Station (either for the current application page or in
response to a Data Server request over the network). Such a request may include
data from various nodes; the local station selects out the non-local idents from
the request to form an “external request” that is sent to the network. Each node
receiving the network request responds to its part of the request only, and the
various “answer fragments” are put together in original request order to build
the response to the original request. The module that processes such a request is
REQD, and the module that includes the “compiling loops” is REQDGENP, because
it generates the internal ptrs for an REQD-style request. The REQD module is the
“odds-on favorite” for having the most complicated logic in the system code.
REQDGENP is a subroutine called by REQD and is therefore an extension of REQD.
As such, it inherits much of REQD’s complexity.

The other variation of data request is the “ordinary” network data request. In this
case, the request may include references to various nodes, but the processing of
the request will result in building only the local node’s answer fragment.
(Obviously, it is this ordinary network request that is used when a node
processes the first data request variation.) The ordinary network request is
processed by the PREQD module which calls PREQDGEN as a subroutine. The code
for this version of the “compiling loops” is simpler than that in REQDGENP,
because references to data from other nodes can be ignored, and an external
request does not have to be built.

Since there are two variations of data requests processed by two different
routines (REQDATA and PREQDATA), which in turn invoke two different
subroutines (REQDGENP and PREQDGEN), it is necessary to write two different
“compiling loops” when a new type of internal ptr must be generated.

Internal Ptrs Oct 6, 1989 page 2
Listype table

The format of a listype entry is as follows:

Ident
type

Set
type

Max#
bytes

Read
type

Ptr
info

Ptr
type

The ident type byte is a small index into the ident table the gives the (short) length
of the ident. It is also used to insure that a request which specifies more than one
listype uses only listypes that are ident-compatible, which just means that all
listypes in the request use the same ident type.

The read type byte is an index into the READS branch table in the COLLECT
module and thus selects the read type routine that produces the answers to a
data request given the array of internal ptrs corresponding to the array of idents
in the original request.

The set type byte is an index into the SETS branch table in the SETDATA module
and thus selects the set type routine that accomplishes a setting action given the
ident and the accompanying data. The max# byte is the maximum number of
bytes of setting data that are acceptable for that listype.

The ptr type byte is of two varieties. If its value is < 32, then it is a table#, and the
ptr info byte is an offset to a field of an entry; if it is ≥ 32, the ptr type byte is used
to index into the GENS table in the appropriate module (REQDGENP or PREQDGEN)
to select the ptr type routine that produces an array of internal ptrs given an
array of idents.

Internal Ptrs Oct 6, 1989 page 3
REQDGENP compiling loop

The register-based call to the ptr type routine is as follows:

D2.L= Ext ident cntr in hi word, #idents (bit#15 = long id flag) in lo word
D4.W= Ptr info byte
D5.B= local node#
D6.W= #bytes of data requested from each ident
A1.L= Ptr to array of idents
A2.L= Ptr to output array of internal ptrs
A3.L= Ptr into array of external idents

Upon exit, A2 should be advanced reflecting the number of internal ptrs that
have been stored. The number of external idents is incremented in the upper
word of D2 as they are encountered. For each such ident, the ident itself is copied
into the array of external idents pointed to by A3. This is used in the external data
request that will be sent to the network to collect the answer fragments from the
other node(s) referenced in the request. Other registers are scratch except, of
course, A5/A6.

PREQDGEN compiling loop

This case is simpler from the previous case since all idents which reference
data from other nodes can be ignored. The register-based call to the ptr type
routine is as follows:

D2.W= #idents (bit#15 = long ident flag)
D4.W= Ptr info byte
D5.B= local node#
D6.W= #bytes of data requested from each ident
A1.L= Ptr to array of idents
A2.L= Ptr to output array of internal ptrs

Upon exit, A2 should be advanced reflecting the number of internal ptrs that
have been stored. Other registers are scratch except A3/A5/A6.

Internal Ptrs Oct 6, 1989 page 4
Internal ptr types

Ptr type < 32. Table entry field ptr
If entry# out-of-range, use ptr to zeros, else use ptr to field in table entry.

Ptr type = 32. Memory address ident
For short ident case, map 24 bits into 32 bits by using $FF for the hi byte if the

24-bit value is ≥ $F00000, else use $00 for the hi byte. For the long ident case,
use the full 32-bit address for the internal ptr.

Ptr type = 33. Device name to channel ident
There is no long ident case, as the ident is merely the 6-character name. The

internal ptr is the node# in the hi word and the channel# in the lo word.

Ptr type = 34. Binary status via Bit ident
Use the lo 24 bits of the internal ptr to store the address of the BBYTE entry

which contains the value of the status byte. The hi 8 bits contains the bit# in the
range 0–7 of the bit in the byte to be sampled.

Ptr type = 35. Global variables (relative to A5)
The internal ptr is merely the address of the global variable.

Ptr type = 36. Generally interesting data
The internal ptr is merely the address of the byte in the G.I.D. pool.

Ptr type = 37. Serial input queue data
The internal ptr is the base address of the serial input queue. If there were

more than one serial port, it would be logical to use the base address of the serial
input queue associated with the port according to the ident value.

Ptr type = 38. Data stream data
The data stream index is in the hi word and the ptr info is in the lo word. The

ptr info (and hence the listype#) can be used to identify whether old data is being
included in the request.

Internal Ptrs Oct 6, 1989 page 5
External answer buffer ptrs

For the local or data server types of requests, the internal ptr may be marked as
one which points into an external answer buffer. Normally, bit #31 is used for
this purpose. The read type routine, when it sees the sign bit set, will simply
copy the bytes of memory pointed to by the other 31 bits; any special processing
to produce the data was already done by the node that sent the answer fragment
that is copied by the Network Task into the external answer buffer. In the case of
a memory address used by read types #1 or #4, where the job of the read routine
is merely to copy the memory pointed to by the address, this special use of bit
#31 is not used, as the job is to copy memory bytes in any case, no matter what it
points to.

For writing new ptr type routines, it is advised to study some of the seven
current examples for ptr types 32–38 above. Recall that two routines should be
written, one referenced from REQDGENP and the other from PREQDGEN. The latter
type is simpler than the former.

MMAPS table entries for D0 Boards
Nov 12, 1991

Central Tracker FADC Memory Map (map-type #1)

D0D0 0006 0010 0000 Loop over 5 commands 16 times
0001 0022 000E 0000 t1, t2, t3, t4, s1, s2, s3
0001 0004 0002 0000 depth
0001 0006 0002 0000 chanNumber
0001 0002 0004 0000 dacGain1, dacGain2
0001 0002 0002 0000 dacOffset
0001 0038 0000 0000 Skip to end of 128-byte block

Total data: (14+2+2+4+2)*16= 384 bytes

Calorimeter ADC Memory Map (map-type #2)

D0D0 0002 0020 0000 Loop over next 2 commands 32 times
0001 0000 0060 0000 Access first 96 bytes
0001 0020 0000 0000 Skip 32 bytes to end of block

Total data: 96*32= 3072 bytes

Data Access Table function
Thu, Feb 18, 1993

This note describes a Data Access Table routine that monitors 16-bit counters to insure
that co-processors are functioning normally. It can also monitor the rate of counter
advance to show load level. By including a result status bit in the alarm scan, one can
generate an alarm message when either a co-processor quits working, or access to a co-
processor stops working.

Data Access Table entry layout:

2 4 0 0 Chan# ptr to counter word

offset to next counter word Bit# #Chans

The change in value of the counter word since the last time this entry was processed is
stored as the reading of the given Chan# channel. This can be one 15 Hz cycle, or it can
be more using an appropriate $7F period entry to specify a sub-multiple rate of
execution. For #Chans > 1, the offset longword is used to advance the ptr to get the next
counter word address, which is then used to target the next channel.

An optional Bit# word specifies a Bit# that is set or cleared to indicate whether the
change difference value is nonzero or not, respectively. (If this option is not used, the
Bit# word should be zero.) The reading of this Bit can then be used to generate an alarm
message when it is zero, indicating that the counter is not changing. This feature is
probably easier than trying to predict what the value of the change should be in order to
set the nominal and tolerance values to alarm on the analog channel.

If a bus error occurs when accessing the counter word, the delta value is set to zero, and
the (optional) Bit is cleared, indicating that the counter is not changing.

Note that the longword offset value allows accessing multiple co-processor counter
words across the vertical interconnect with a single entry, if the counter words are in the
same location in each co-processor’s memory.

Supported motor types
Wed, Aug 2, 1995

Several types of motor interfaces are supported by the local station/IRM
system. This document describes these possibilities and how to specify and
use them.

Analog control field

It is in the analog control field of the analog descriptor where the
primary motor parameters are set. Analog control type $02 is used for this
purpose; hence the 4-byte analog control field looks like this:

 MPW Conversion
Development platform for local station system software

Jan 13, 1992

During a ten day period around New Year’s Day 1992, the local station system
software was ported to the MPW development system used on the Macintosh.
This brief note describes something of how the process went. Reasons for the
change from the Octal tools on the Vax used for many years are these:

1. Octal software is no longer actively supported. The 68020 assembler seemed
to be unable to generate the 32-bit PC-relative addressing mode that is needed to
get an address of a routine or table in the system code in a position-independent
way in a large (> 32K) program.

2. The Pascal compiler pre-dates the floating point co-processor chip and cannot
generate the instructions for type Real support. Local applications that need such
instructions were developed with MPW Pascal.

3. The size of the system code (60K) was stretching to the limit a model of pro-
gramming conventions that would theoretically break at 64K, as it attempted to
maintain the limits of 32K branches of the 68000 CPU. Since all local stations now
run on 68020 CPU’s, this restriction can be eliminated.

4. The Macintosh is a conveniently accessible platform if one has a Macintosh on
his desk. It is actively supported by Apple Computer for its own software devel-
opment and for Macintosh developers. The cost is $525 for a single user, with
support for both C and Pascal.

5. The most recent version of MPW, version 3.2, allows support of “32-bit
everything” including the ability to generate a code resource >32K bytes. The
local station system code is linked as a single code block segment.

6. The MPW assembler supports structured assembly syntax through an exten-
sive set of macros. Many other assemblers available today do not include support
for structured syntax (IF-THEN-ELSE, REPEAT-UNTIL, etc). The local station system
software uses this syntax heavily. Elimination of that syntax from the source code
is inconceivable.

The first job to be handled was to find a way to automatically change the struc-
tured assembly syntax from the format Octal supported (and Motorola in their
original EXORmacs development system) into the format used by MPW. The MPW

shell supports Unix-like (but not fully Unix-compatible) commands for editing
that include “regular expressions” for indicating the text to match for a Replace
command. A set of 20 Replace commands were designed for use via a command
file to do the structured syntax conversion. Without this automatic aid, the job

MPW Conversion Jan 13, 1992 page 2

Each of the approximately 100 source files of 31K lines of assembly code was
passed through the automatic conversion first and boiler-plate header lines
inserted to invoke the structured syntax macro support and the system constants
“include” file. Then each file was checked for details that had to be changed
manually. This included identifying code sections individually with the PROC

directive and data structure templates using the RECORD directive. There were
also some pathological cases converted incorrectly by the automatic process.

Then an assembly was attempted. Sometimes no errors resulted. Sometimes up
to 10 pages of errors were listed on the screen. In the latter case, usually a few
error corrections eliminated many others. Eventually, all errors were gone, and it
was time to move on to the next one. After the first few dozen files were conv-
erted, things began to go faster.

After all source files were converted and assembled, the next step was to link
them into a system. At this point MPW 3.2 was needed to get the “-model far”
option that permits building a large CODE resource. After correcting the errors in
undefined names, a 60K CODE resource was in hand.

The next step was to use the Hex tool to translate into S-records to be used for
downloading via the serial port into a VME local station. This tool was written by
someone from England long before, and it was limited to CODE resources of 32K
bytes. Inspection of the Pascal source code revealed that the buffer was only 32K
in size. The size was changed to 100000 (decimal), and the tool was re-compiled
with the “-model far” option used for both the compiler and linker commands in
the “make” file. It worked.

The S-records were downloaded into local station 0576, and after a reset, the
system came up running. But a bug was found that produced a “3” error
(internal inconsistency) on the memory dump page. Upon correction, the system
ran apparently ok. In the next days, a few more errors were found and corrected,
including the macro file FlowCtlMacs that supports the structured syntax.

 NTF Connection
Linac control system implementation

Dec 20, 1991

NTF architecture
Neutron therapy signals are primarily interfaced via a special 68000 CPU

board running a small (4K) program that measures the delivered dose and stops
the treatment when the prescribed limit is reached. It also checks for a number of
error conditions and stops treatment if these occur. This dedicated program is
driven by a PC-based user interface that is connected to a local station whose
crate houses the dedicated processor.

I/O boards

PC

NTF processor

‘B’ local station CPU

shared
memory

NTF token ring

memory

arcnet

‘C’ local station CPU

Linac token ring

NTF Domain

A
R

T
R

arcnet to SRM

A
R

T
R

C
U

C
U

6
8
0
2
0

6
8
0
2
0

6
8
0
0
0

The ‘B’ local station supports the token ring connection to the PC that is the NTF

host, providing the user interface for patient treatment. This local station has the
same complement of hardware/software as any other, with the addition of a
special co-processor to handle the NTF-specific functions. The non-volatile
memory board that houses the local station database and software also provides
the connection between the two processors in the same VME crate, which is
necessary because the I/O boards are accessible only from the MVME-110 68000
board. Every 15 Hz cycle, the 68000 copies about 256 bytes of data readings and
diagnostic info into (a small part of) the shared memory. Likewise, settings are
sent to the 68000 via a small command message queue in the shared memory.
Station ‘B’s know ledge of the shared memory is limited to the data access table
entries that copy from the shared memory data and also the co-proc essor queue
table entry that specifies the location and size of the command queue.

NTF Connection Dec 20, 1991 page 2

The ‘C’ local station provides access to the NTF system from the rest of the control
system in a controlled way. It collects data via arcnet from ‘B’ using the SRM data
acquisition protocol. It also makes settings as if ‘B’ were an SRM.

Note that there is some effort to isolate the special NTF functions from arbitrary
access by the rest of the control system; however, the rest of the control system
does need to access some NTF data and even control a few signals. The ‘C’ local
station and its arcnet connection to ‘B’ provides for this.

History
The previous version of the architecture used a byte-wide fifo link connection

between the special NTF co-processor and station ‘C’. The reason for the new
arch itecture using arcnet is to retire the special byte-wide link interface,
replacing it with one commonly used with new Linac local stations.

Data acquisition
In order to make station ‘B’ behave to station ‘C’ as if it were an SRM, a local

application called SRMD is installed in station ‘B’. It receives the SRM cycle request
issued by ‘C’ every 15 Hz cycle. (In fact, it is broadcast to the arcnet network so
that both its SRM and ‘B’ receive the same request message.)

By the time ‘C’ receives its (delayed) 15 Hz interrupt signal, the data from the
special NTF processor has already been copied into the shared memory. This
means that the request message subsequently sent by ‘C’ cannot arrive too early
for ‘B’. When ‘B’ is processing its data access table, it calls the SRMD local appli
cation, which looks for the request message over arcnet from ‘C’. (SRMD may wait
for a short time to be sure ‘C’ has a chance to issue that request message.) The
arcnet interrupt code in ‘B’ should expect a cycle data request and pass it through
to the message queue that SRMD polls. (This is also done for data acquisition
replies, as in ‘C’.)

The local application builds a reply message containing readings of selected ana
log channels of station ‘B’, including 8 words of nominal and tol erance values
from the co-processor’s prom-based table used for check ing beam transmission
ratios. (These latter values do not change, of course, but they are needed for
operator reference.) The reply message is queued to the net work and sent to ‘C’,
where it is mapped into assigned channel readings in its database. Other nodes
on token ring can access this data from ‘C’ to view NTF data.

NTF Connection Dec 20, 1991 page 3
Settings

For handling settings, a node sends a setting message to ‘C’. For a channel in
the NTF system which is permitted to have control, a short setting message is sent
via arcnet to ‘B’. The SRMD local application reads this setting message containing
a reference to an analog channel number of ‘B’. It merely calls the setting routine
to control that “local” channel. If the analog control field of the channel’s analog
descriptor entry permits settings, a short setting message is placed into the com
mand queue. The co-processor notices it and executes the command. Assurance
of success comes from the expected change in the NTF data refreshed every cycle.

Other details
The PC host operates through ‘B’, whereas other nodes’ access to NTF is via

‘C’. This provides an easy way to limit which signals are controllable from
outside the NTF domain.

Currently, NTF signals controllable via ‘B’ are the beam on-off pulse ratio, the
dose accumulations and dose limits, un-clamp integrator gate, and reset. Signals
controllable via ‘C’ are the beam on-off pulse ratio, nominal and tolerance values
for the 58° and 32° magnet currents, rise time of the 58° magnet, and reset.

Because ‘B’ behaves as an SRM to ‘C’, there is a status bit that can be monitored to
generate an alarm condition if ‘B’ is not responding to the request message. Data
acquisition from each SRM includes generation of this pseudo status bit.

 NTF Interlocks Checking
What do the little LEDs mean?

Feb 15, 1992

The NTF control system includes a special co-processor that shares a VME crate
with the NTF local station. This 68000 cpu board runs a small program which
performs certain NTF-specific checks relating to neutron beam delivery. This note
describes these interlock checks the results of which can turn off the NTF beam
and indicate the reason via a set of eight LEDs. These lights can be seen at the NTF

station, but they are also part of the datapool that is available from node 061C via
the Arcnet connection. (See the document “NTF Connection” for a more extensive
discussion.)

• Missing beam check

Two toroids are used to measure beam for NTF. CTOR1 measures the beam that
exits Linac tank 4, and CTOR2 measures the beam that is headed for the NTF target
that produces the neutrons. There is a constant beam threshold that is used to
discriminate whether either toroid reading represents any beam. That threshold,
which is a program constant, is currently a value of 0.31 volts, corresponding to
3.1 ma using the current 100 ma fullscale value for those signals. Any reading
less than this value is considered noise that is interpreted as no beam.

Both toroids are examined (in absolute value) every cycle. Only if both are below
the threshold value, the pulse is ignored for purposes of determining missing
beam status. If CTOR1 is above threshold, there is beam and CTOR2 is compared
against a value of 0.68*CTOR1. If it is less, the transmission “around the bend” is
considered too low, and the pulse is considered a “bad” beam pulse; if it is
greater, then the pulse is a “good” beam pulse. After 15 valid beam pulses, if
there are less than 8 “good” pulses out of 15, then Missing beam status results.

In the unlikely case that the reading of CTOR1 is below threshold, and the reading
at CTOR2 is above the threshold, the pulse is counted as a “bad” beam pulse. In
this case, the “missing beam” refers to inconsistent readings, as CTOR2 would not
be expected to exceed CTOR1.

The missing beam logic does not depend on the ON-OFF sequencing described
below. The determination is made after every 15 valid beam pulses.

NTF Interlocks Checking Feb 15, 1992 page 2
• X1,X2,QP limit checks

Long term accumulations are checked following the end of each ON sequence.
Normally, the practice has been to program a sequence of 5 ON pulses followed
by 0 OFF pulses, which just means that the following checks are made every 5
beam pulses. (Another detail relating to the #pulses in a sequence is that the long
term accumulations for beam charge and ion chamber integrations are accum
ulated in a 16-bit word during the sequence. Since they are 12-bit resolution
readings, keeping the #ON pulses below insures that there can be no overflow.)
Note that a beam pulse here means any scheduled beam pulse, not one that is
required to exceed the threshold described in the Missing beam section.

Each long term accumulation is compared against the established limit value.
(See the document “What are the Units of X1 LIMIT” for more details.) If the
accumulation exceeds the limit, then the corresponding status results. This is the
normal way that neutron dose treatments are terminated. (There are also
hardware limits that are set slightly higher, including a time limit, as an extra
measure of safety.)

• QP/X1, X2/X1 ratio check

Ratio checks are made at the end of each ON sequence. The reference values for
these ratios are stored in PROM and thus cannot be easily changed. This is
intentional, for they are used to insure that the beam transport and neutron
production are functioning normally as established via careful calibration. In the
PROM are nominal and tolerance values for each ratio—and for each reference
voltage as described below. If a ratio falls outside the tolerance window, the
corresponding ratio status results.

• V1,V2 Reference voltage checks

Reference voltages are checked at the end of each ON sequence. They are a
measurement of the power supply voltages used for the integrators of the ion
chamber signals. The nominal and tolerance values are kept in PROM. If a ref
erence voltage falls outside the tolerance window, a voltage check status results.

• LED lights

All eight checks are reported via a set of LEDs and also as data that can be mon
itored. Any LED that is set will inhibit further beam until CTF RESET is asserted.

Wed, Feb 22, 1995

Data request support for local stations/IRMs uses “ptr-type” routines to
“compile” a request for data specified via a listype#, where the request in this
context is comprised of an array of “idents.” A ptr-type routine scans the array
of idents and produces an array of “internal ptrs” that represents a kind of
“object code” for the original request. This is done so that “read-type” routines
can generate the reply data most efficiently, especially for the case of requests
for periodic replies.

To illustrate this simply, consider a request for readings of analog channels.
The listype# for analog readings is 0. The idents used for such a request are
channel numbers, each given as a two-word structure, the first word being a
node# and the second word a channel#. The analog data pool of a local
station is organized as a simple array of records, one field of such records being
used for the reading word value. The format of internal ptr used in this case is
a pointer to the given channel;’s reading field in its analog data pool record.
The update logic, then, which utilizes a read-type routine, is a simple loop that
gets an internal ptr from the array and dereferences it to obtain the reading
value result, and loops over the number of idents—the same as the number of
internal ptrs—presented in the original request.

For the Classic protocol, as used by local or page applications, a data request is
made specifying an array of listypes and an array of idents. If more than one
listype is used, each must be associated with the same ident types, as the same
ident array is “compiled” into internal ptrs for each listype given in the
request. Sometime after the request has been made, the application invokes
Collect to retrieve the results. Typically, an application does this on the next
operating cycle. If the data should not yet be available, because the request
required data to be retrieved from another node, then the Collect routine waits
for the external data to arrive. There is a timeout for this that is normally 50
ms after the current cycle.

There are only a few error return codes that Collect returns, as follows:
0 No errors.
1 Invalid list#. Maybe the request was really strange.
2 Data not yet available. Collect called on same cycle request was

made.
3 Internal corruption of request context.
4 Bus error detected in collecting answers.
5 Too few bytes received from an external node
6 Too many bytes received from an external node
7 Answers tardy, but have received answers at least once from ext

node.
8 Answers tardy. Nothing ever received from ext node.

Note that the only nonzero error codes normally seen are 4, 7, 8. Ask for
memory data using an address ident that is invalid for that station’s
hardware, and an error 4 is returned. Ask for data from an invalid node# or a
valid, but non-operating node#, and an 8 will be returned. Ask for data from a

intermittant 7 errors will appear. During a periodic request activity, if that
node drops off the network, solid 7 errors will occur.

The Ptr-type routines that build internal ptrs try to do so without error. If a
system table does not exist, for example, the request cannot reasonably be
supported by this node, so zeros are returned for the answer to the request. The
ptr-type routine and the corresponding read-type routine for the given listype
work together to produce the answer results. The internal ptr is the output of
the ptr-type routine and the input of the read-type routine. There is no
mechanism for returning an error code in the call to the data request
procedure. The only error return that a read-type routine can return to Collect
is a bus error indicator, which causes Collect to return error code 4. One might
say that the attitude here is that a faulty request results in answer data of
zeros, by definition.

In writing a ptr-type routine, consideration must be given to what is needed by
the corresponding read-type routine to define the answer data. In the case of
an ident that is from an external node, an external answer ptr form is used
that is usually a ptr to the proper place in that external node’s dedicated reply
buffer for that request, which is allocated as part of the request block data
structure for that request. In order to indicate that case of an internal ptr
value, the sign bit is set in the internal ptr, which is a 32-bit longword. This
means that typically one will find in a read-type routine corresponding logic
that detects the presence of the sign bit to signal an external ptr case, removes
the sign bit, then uses the low 31 bits as a ptr into the proper place in the
external node’s reply buffer in the request block. (All dynamic memory, and
hence all request blocks, reside at memory addresses below 1 MB, so nothing is
lost by commandeering bit# 31 for this purpose.

The case of a memory address ident is special. In this case, the user specifies an
arbitrary 32-bit memory address from which data is to be retrieved. So we
must use all 32 bits of the internal ptr for the given memory address. So in this
case, the ptr-type routine does NOT set bit# 31 of the internal ptr to mark the
external answer ptr case. And the read-type routine merely copies memory
data from the address given. If that address happens to point to the external
answer buffer, memory is copied from that buffer. If it happens to point to a
field in a system table entry, memory is copied from there. In either case,
memory is copied to produce the answers. It does not matter from whence it is
copied.

RDATA Periodicity
How to access data infrequently

Sep 14, 1989

The Read Data Access Table (RDATA) has traditionally been scanned on each
15 Hz cycle to read all the data from the hardware interfaces into the system’s
datapool. The analog data is stored in the ADATA table and the binary status
data is stored in the BBYTE table. But there can be reasons why the data should
not all be read at 15 Hz. One reason may be that it takes too much time to read
everything every cycle. Another reason is that the very act of reading some
hardware interfaces can cause noise interference. The liquid argon
temperatures in D0 are an example of the latter case. This note describes a
plan for accommodating access to data at more leisurely intervals.

In order to arrange for less frequent execution of some entries in the RDATA
table, some means of keeping a counter is required. We can assume that the
table will be scanned at 15 Hz, but some entries may not be executed each
time. To pick a concrete example, let’s say that we want to read some
hardware at 15 Hz and some other hardware at 1 Hz, but there is a lot of
hardware that must be read at 1 Hz. We want to schedule the accessing of
some of that hardware on different cycles. This means that we want to specify
a “phase” value for sequencing the components of the large amount of 1 Hz
data. So we need a way to specify a period, a counter to count out the period
value, and a “phase” value to initialize this period counter at reset time.

Consider groups of entries in RDATA which should be processed with the same
period and phase. Use a special entry which acts as a sort of header for the
following entries and specifies this period information for the following
group of entries. The group size includes all entries until the next special
period-holding entry or the end of the table, whichever comes first.

Suppose we use the following period-holding format:

Bit#/Chan#

Period
Counter$ 7 F Period Phase

Lower

state

-

Upper

0=Bit, 1=Chan

Note that the period is specified as a 16-bit field. This allows for periodic data
collection to be as infrequent as approximately every hour. The optional Bit#
or Chan# and state value (in the sign bit of the word) can be used to condition
the processing of the entire group of RDATA entries which follow this period
entry. The Bit#/Chan# must be nonzero to enable this option. When using
this feature, one must take care to have collected the binary status data or the

RDATA Periodicity Sep 14, 1989 page 2
the period entry which needs to reference it.

For the Bit# case, the following group of RDATA entries is enabled when the
state of the indicated Bit matches the state bit. For the Chan# case, when the
state bit=0, the group is enabled when the reading of the indicated Chan is
within the range of values given by the Lower and Upper words. If the state
bit=1, the group is enabled when the reading is outside the range.

At reset time, the system scans the entries in the RDATA table for these period-
holding entries. For each one it copies the phase value into the period
counter. (If the phase value is larger than the period value, it merely zeros the
period counter.)

At 15 Hz time, when the Update task is reading the data from the hardware,
the RDATA table is scanned for a period-holding entry. All entries are ignored
until the first such entry. If the Bit#/Chan# word is nonzero, apply the
indicated test above. If the test fails, set a flag to ignore the following entries
until the next period entry; if it is successful, clear the period counter. Next, if
the period counter is zero, copy the period value into the period counter and
set a flag to enable processing of the following entries. In any case, decrement
the period counter. For the simple case of 15 Hz, the period would be 1, and
the phase would be 0. Viewed on the memory dump page, the period counter
would seem to always have the value 0. For longer periods, the phase may be
set to any value from 0 up to the period - 1, and the period counter would
exhibit its decrementing behavior.

This capability for execution of various accesses to hardware interfaces on an
infrequent basis can also be used for other infrequent scheduling within the
VME system. The meaning of each entry type in the RDATA table is fairly
open-ended, and new code can be added to do other jobs.

 Readings Averaging
Accelerator protocol feature for local stations

Sep 15, 1991

Introduction
The Linac operates at 15 Hz, and each cycle may or may not produce beam,

according to the accelerator timing system clock events. For normal viewing of
Linac device readings, as on a parameter page, it has been traditional for many
years to display reading values averaged over beam pulses only, ignoring the
pulses which have no beam. In the case that there are no beam pulses occurring
in the averaging interval, then the average of readings for all cycles in the interval
is shown. The averaging logic serves two purposes. The first is that data from
beam pulses is selected preferentially over that from non-beam pulses. The
second is that fluctuations are reduced in the displayed values.

The averaging logic has always been done by the application program that needs
the values. In order to do it, the application must be aware of which cycles are
beam cycles. This information is available at each Linac local station by a status
bit that is wired to all stations. Note that this signal indicates that beam is
scheduled to be delivered by the Linac; it does not guarantee that protons will in
fact be accelerated. But it serves to provide a proper value to display beam-
related data, such as beam current toroid readings. If a beam current reading
were used in place of a status bit value to determine whether a pulse was a beam
pulse, then it would not display correctly under conditions of low beam currents
below the threshold value used for that determination.

The local station parameter page (on the small consoles) checks its own local
beam status bit to decide whether the present cycle is a beam cycle. The
Macintosh parameter page (written by Bob Peters) uses a pseudo-channel value
from a specific local station that contains the same information. The Vax
parameter page (written by Jim Smedinghoff) uses a beam toroid reading.

When the beam cycle status information is delivered over the network, rather
than measured locally as in the local stations themselves, there is an additional
problem of correlation with the present cycle’s data. If the data to be averaged
comes from a different source node than the beam status, one must insure that
the beam status is known from the same cycle; otherwise, the average value may
be diluted, especially for beam toroid readings. The Macintosh parameter page
uses the data server for its requests, so the pseudo-channel reading is delivered
in the same message along with the data to be averaged.

In case of the Vax parameter page, the data may not be deliverable in a single
message until the entire Linac controls upgrade is in place, and all Linac data is
requested from the Linac data server node. In the interim, while some Linac data
comes via the PDP-11 front end and some comes from the server node or from a

Readings Averaging Sep 15, 1991 page 2
especially true because the Vax data pool manager (DPM) does not provide
support for 15 Hz correlated data, even when it does come from a single node; a
requester only gets (via DPGET) the last value of a given data item that was
received. Another data item is obtained by a separate call to DPGET, and there is
no guarantee that another cycle’s data message has not been received since the
first call. In fairness, it should be pointed out that one can obtain a sequence
number for each item to determine whether new data has been received, but
there is no way to insure that one can capture correlated data, even when the
network actually delivers it. For Linac studies, this is a serious limitation of the
accelerator control system, in the opinion of this writer.

In part because of the difficulties mentioned above, people have several times
requested that the local stations perform the averaging logic. I have resisted this
suggestion in the past because it seems to me that it amounts to placing
application-specific code in the local station. One does not want to reach a point
where applications can only be written on the Vax by adding application-
dependent code to the local station system software as well. The local station’s
main job is to deliver the data to any and all requesters; what a requester does
with that data should be up to the application program completely. In this case,
however, the reality of the situation is that the Vax software is not designed to
retrieve correlated 15 Hz data. If support for average data readings is to be
provided to Vax applications, such as the parameter page, it may have to be done
by the local station software.

Implementation
Although the averaging logic is well-known, it does not easily fit into local

station support for data requests. The idea of averaging all data readings in the
local station is rejected a priori; therefore, the support should be provided on a
request basis. How does one specify to the local station that average values are
needed? One suggestion is that a request period which is neither one-shot nor 15
Hz would be the indicator that average values are desired. The notion here is that
sampling data from a 15 Hz Linac at other than 15 Hz is at best a hit-or-miss
proposition and not for serious data-taking. Of course, given the averaging logic
as stated above, the result of “averaging” data readings from a single pulse must
be the same as the single reading from that pulse, independent of whether it was
a beam pulse. This means that all readings could be treated with the same logic
without regard for the data request period.

For the accelerator data request protocol supported by the RETDAT network task
logic, which is the protocol used by the Vax consoles, each device request packet
included in a data request message contains an SSDN. Inside the SSDN is a
listype#, the fundamental data type specification used for local station data
requests. In order to provide reading values useful for plotting as well as as for

Readings Averaging Sep 15, 1991 page 3
any data request packet. Also, the check could be made for the reading property
index where two bytes of data are requested. Note that we only want to average
analog readings. There is a potential problem with using the readings listype# as
a key. We will be providing reading words as basic status values that contain
collections of status bits. This will be done to provide a name and alarm mask for
such assembled status words. We should therefore include the check on the
reading property.

Internally, the averaging requires additional storage for the accumulation of
reading values over the beam cycles (or the non-beam cycles in the absence of
beam cycles) for each device for which a reading is requested.

The request period is used to specify the averaging interval. This interval is not
synchronized with anything but 15 Hz cycles. For the Linac which often delivers
13 successive pulses of beam to the Booster, the averaging interval may not
include the entire sequence of 13. This points out one advantage of doing the
averaging logic in an application, where an adjustment can be made to
synchronize the averaging interval to such bursts of beam pulses for display
purposes. A periodic request does not specify this kind of “breathing” logic. If it
were done, a Vax program might not mind, but the server node might have a
problem adjusting to it, since the server node delivers replies to requests at times
which depend only on the fixed request period intervals. On the other hand,
since the server is not doing the averaging, its last data readings received from
the contributing nodes will already be averages. If the server node does not mind
the “breathing” in the timing of the contributing nodes, it might be ok. (The
server node is not given the job of doing the averaging because it is already a
bottleneck by design, and it would require collecting the data from the contrib
uting nodes at 15 Hz, while only delivering 1 Hz replies to the consoles. If the
averaging is done locally by each contributing node, then the load is distributed;
and the load is also much less, because those nodes only send their average
values at 1 Hz to the server.) Another value in having the application program
support averaging is that the count of the number of beam pulses present in the
accumulation of the average can be shown on the display as well. This was done
in the olden days for the Linac-only parameter page.

Details
Concentrate on the logic involved in support for the non-server request using

the accelerator protocol. (All accelerator protocol logic is in the ACREQS module.)
One memory block used in support of these requests is the type#14 internal ptrs
block. Each device in a data request is “compiled” into an internal ptr, which is
used to facilitate update of the reply data. Most often, the value of an internal ptr
is the memory address of the data to be returned. Specifically, in the case of a
request for an analog reading, the internal ptr is the address of the reading data

Readings Averaging Sep 15, 1991 page 4
To support averaging, we still want to maintain a ptr to the reading field, but we
must also maintain a longword accumulation value. The allocation of memory
needed for the internal ptrs block depends upon the number of internal ptrs
needed. We must add an extra longword for each internal ptr that needs to
support averaging. During the scan in the NSERVER routine, we should detect the
need for this extra space for the internal ptrs block and increase the value of
NPTOTAL accordingly, since it is used later to allocate the internal ptrs block. The
space for the averaging case will be two longwords per device; the first will be
the usual internal ptr value, and the second will be the accumulation longword.

In addition, for the entire request, we need to keep two counters. One is FTDC,
the count of cycles over the request period, and the other is SUMC, the number of
cycles of data that have been added to produce the accumulation. Also, there
must be a state bit that records whether the accumulation holds data from beam
cycles or non-beam cycles.

Until now, a call to ACUPDATE from ACUPDCHK produces a new reply to a data
request. To support this new feature, we must do some accumulation work every
cycle, not just the cycles on which a reply is due. A test for the need of accum
ulation logic is required in ACUPDCHK before ACUPDATE is called.

During initialization of the non-server request, each device request block (DRB)
which needs the special averaging treatment is marked by setting the sign bit of
the RDI word in the DRB. (The RDI word contains the read-type routine index
and is a small integer used in the READTYPE call to update the answers corres
ponding to that DRB.) The test for the need of the averaging logic is that the
reading property index (=12 decimal) is used, the listype for analog reading (=0)
is used, and the #bytes requested is 2. The internal ptr for this analog reading
case will of course be the pointer to the reading word in the analog channel
ADATA entry, so the accum ulation logic is simple. If other listypes should need
averaging support in the future, they might be additionally permitted. As stated
before, the number of internal ptrs required should double for such DRB’s to
allow room in the internal ptrs block allocated later for the longword needed for
the accumulations. Set a flag so that the internal ptrs block header can be marked
to indicate that averaging logic is needed by at least one DRB in the request.

For each cycle of a request that needs the averaging logic applied, according to
this flag in the internal ptrs block header, the DRB’s are scanned in AVGACCUM.
For each DRB marked in its RDI word, accum u lations of the current readings are
made according to the averaging algorithm.

Later, during the update scan at the end of the periodic request interval, the sign
bit of the RDI word is tested to direct the updating loop to calculate and return

Readings Averaging Sep 15, 1991 page 5
data values accumulated to obtain the average.

Postscript
This document was a working document used to explore an implementation

that would accomplish this averaging feature for the local stations. Most of it was
written before the code was started, but it is now updated to reflect what was
done to implement the feature. The implementation required 140 lines of source
code, about 350 bytes of object code and two days of coding and documen tation
effort beyond the initial design discussions and contemplation.

 Read-type Routines
Answers from internal ptrs

Oct 12, 1990

A data request made to a local station is “compiled” into an array of internal ptrs.
These ptrs are interpreted by “read-type” routines according to the listype(s)
used in the request. The read-type routine is called to process an array of internal
ptrs that correspond to the array of idents in the original data request and
produce the corresponding answers. Because an array of internal ptrs is passed to
the routine, it is optimized in speed; its logic does the same processing for each
element of the array.

As new listypes are added to the system, the support often requires new read-
type routines. In the spirit of the named downloaded programs that are used
with local applications, this note considers the implementation of named
downloaded read-type routines.

Current branch table
The current scheme for selecting the read-type routine involves a table of two-

byte offsets to the code (to provide for position independence) for each read-type
routine. The read-type# from the listype table is the table index.

As the system grows—the current size is 53K—the use of two-byte offsets may
appear limiting, so 4-byte offsets could be used. System changes currently
underway will concentrate the knowledge of this branch table into a single
routine called READTYPE, whose single argument is the read-type#, so such a
change would be simple.

New selection scheme

The new branch table has 4-byte offsets for each resident routine but 4-
character names for each downloadable routine. The read-type branch table is
scanned. Each offset entry is converted to a ptr to the resident code, and each
name entry is converted to a ptr to the executable copy using entries (of type
RTYP) found in the CODES table. (For each RTYP entry found, the download copy
is sum-checked and copied into a newly-allocated “executable” memory block.)
The ptr to the read-type routine is stored in a ram-based table used by
READTYPE. There is no provision for replacing or adding a read-type routine
without going through the initialization logic at reset time.

Related Groups of Channels
It’s all in the family!

Aug 31, 1989

Each analog channel is supported by an analog descriptor entry in
the local database. It may be helpful to make associations between
channels that are related in some way. A hitherto unused word in
the descriptor record has been nominated to fill this need. This note
describes its use.

The value stored in the “family” word (at offset 60 bytes in the
descriptor, accessible by listype #17) is a delta channel number that
indicates the “next” channel in the related group of channels. The
value zero then refers to itself. In preparing the family word
contents for a group of channels, one should build a chain that links
back to itself. In that way, when given any member of the group, one
can gain access to all channels in the group. The use of a delta
channel value means that consecutive channels which all belong to a
related group can use the value 1 for the family word. The last
channel’s family word would likely have a negative value to refer
back to the start of the group.

To make accessing the group of related channels easier, a new listype
(#49) supports a data request using a channel ident. The returned
data consists of a word equal to the number of channels in the group
followed by the list of that many channel numbers, beginning with
the channel number that was used in the ident. The length of the
returned list of channels is also limited to the number of bytes
specified in the request. This means that if the size of the group is 9
channels, for example, and the data request is for 16 bytes, the
returned data will indicate 7 for the number of channels followed by
the first 7 channel numbers in the group.

The motivation for providing this feature was to form a group of
channels that all relate to a given timing channel on the Clock Timer
board. There are analog channels used for coarse and fine delay
control, trigger clock event selection, and clearing all selected trigger
events. These can all be formed into a related group, or family, of
channels. Given a coarse delay channel, for example, one can ask for
the channel group, request the analog control fields for all of the
members of the group, and by analysis determine the channels that
are used for event selection. The settings of those channels will give
the selected clock events for the timing channel.

Restoring a Local Station
Changing its personality

Thu, Dec 8, 1994

Assume that each station’s non-volatile memory is periodically saved to a disk file. This could be done on
the Vax or the Sun. If one of the operational stations crashes because its non-volatile memory is
corrupted, and no other solution is immediately apparent, then there should be a procedure that takes
another (non-operational, but working) station and transforms it into the defective one. (One may wish to
save the replaceable system memory module first before converting it to replace the memory module in
the station that broke.)

First, the station that is broke is not on the network. Take the memory board from a working station and
plug it into the broken one in place of its own memory card. When the station is reset upon power-up, it
should come up running as it was, but the token ring hardware address is now changed to match the
broken station’s. With a small change to the system code, we could have the station also come up with the
correct IP address, given that we are discussing Linac 133A-based stations. The reason is that all such
stations use 131.225.129.xxx for their IP addresses at Fermilab, where xxx is the decimal value of the lo
byte of the node# that is sampled from the lo 7 bits of the address switches on the crate utility board,
which is a part of all such stations. This address byte would merely be copied into the lo byte of the
station’s IP address in the header of the IPARP system table.(If one had to change the hi byte of the
node#, one might set the hi byte of the hardware address of the “hot spare” via the network, then power it
down to get the memory board out to plug into the system to be rebuilt. As soon as the node# is changed,
communication would cease, but that’s ok because the board would be removed anyway.)

Now, with the station running, we need to cause it to become largely passive and not try to run
objectionable local applications. In order to do this from a reset, we need to set a hardware switch
accordingly. Also, we don’t want the “restore settings” feature to operate after reset, so the restore inhibit
switch would also need to be set. Should we consider that the restore inhibit switch is an appropriate
means of specifying this “stay low” state? In this state, we would not want the Data Access Table to be
active. This will also prevent any local applications from coming alive. Also, we should not want to run a
page application, so we should plan to come up on the Index Page in this state. The ADATA and BBYTE
tables will remain dormant, and no data will be collected.

Assuming the “stay low” state, what kind of memory restoration can be done?

These tables should already be working, at least nearly:

(put picture #1 here)

These tables can be simply copied directly:

(put picture #2 here)

After all of these tables have been placed, reset the station so it comes up and restores D/A’s, with the
proper values of settings being sent to the hardware. This will also turn on data streams. Finally,
download the RDATA table, which will activate all relevant local applications, start updating the data
pool, etc. At this point, the station should be working as the broken one once did when the memory was
saved. Acnet may have save files to download, too, at this point.

How to return it to life
Mon, Nov 28, 1994

When a local station “dies”, how can one recover it? A procedure must be
developed that can be followed by any number of people with only a
minimal acquaintance with local station hardware and software. Let us
here assume that a station is not working, and it is important to be able to
get it back into service as quickly as possible. Possible problems that can
exist are too numerous to itemize fully, so a basic and reliable starting
point must be defined. Assume one starts with a working VME crate,
including MVME-133A cpu board, crate utility board, arcnet interface
board, token ring network board, and a nonvolatile memory board. Since
what is wrong may be the contents of the memory board—not easily
verified for total correctness—assume that a generic memory board is
available “off-the-shelf.” This note is to be developed into a procedure for
restoring a generic memory board to work as the installed one did before.

Generic nonvolatile memory board
Given a board base address of 100000, at location 120000 is

normally stored the contents of the operating system code. At location
13E000 is stored the pSOS operating system kernel. This allows for up to
112K of system code, plus 8K of kernel. (At this writing, the size of the
system code is about 81K.) The generic board should have this entire
space cleared, so that upon reset, a PROM copy of the system code will be
entered. (This PROM copy is based at FFF04000.)

Assume that the table directory has already been prepared properly for
any Linac local station. The lo byte of the node# is taken from the byte of
address switches on the crate utility board. The hi byte is 06 for any Linac
local station. (A byte value of 05 is used for diagnostic stations, and 07 is
used for D0 stations.) To change the hi byte value via the network means
changing the byte at 105046. Once this is done, however, the station
should be reset to activate the new node#.

Assume that the entry in PAGEP for Page T already points to the PROM-
based token ring initialization page application at FFF1A000. This will
cause the station to open onto the token ring network after a reset.

Assume that an IPARP table already exists for this generic memory board.
The only unknown field is the IP address at 10E010. This can be
temporarily preset to an IP address that is not normally used. (We assume
here that only one such instance of a generic node will be operating at
once.) Maybe this could be 131.225.129.9, or 83E1 8109. Note that all
token ring nodes at Fermilab use subnet 129, so that their IP addresses are
of the form 131.225.129.yyy, or 83E1 81xx. To set the IP address correctly,
change the last byte at 10E013 from 09 to xx. After a reset, the station

Assume that the generic board already has been loaded with the 09xx
table of Acnet IP addresses. This allows the 09EA parameter of the AERS
local application to access node OPER via IP to acquire the logical-physical
node address table used in Acnet for communication with other Acnet
nodes.

How can we determine the correct 09xx for the node that is being
initialized? It is stored at 10507E. After changing it, reset the station to
activate it.

Use the Page G remote access from some host to “log in” to another local
station, such as node 0508. Run Page D on that node—in the copy mode—to
load up the newly-configured station with local applications and page
applications needed by that station. Perhaps we need to keep a record of
those needed by each station, along with the parameter values for specific
instances of local applications. From a saved memory board file, this
information can be extracted.

Many other parameters can already be installed in the generic memory
board. These include the token ring group and functional group addresses
for reception at 105048, the token ring group addresses for transmission
at 105B80, the ‘AR’ key at 105032 needed to activate use of arcnet, and
the data stream table entries for network frame diagnostics and setting log
diagnostics.

Reference for saved memory information
In order to provide a proper backup for restoration of the

nonvolatile memory board, a copy of it should be saved periodically. From
the table directory, one can find out the location of all system tables. The
contents of most of these tables can be downloaded to complete the
restoration of the system. The procedure for handling restoration of the
tables is usually, but not always, simply targeting the generic board with
the saved contents of all tables. But some tables need to be treated with
special care. See the related document System Tables and Their Uses for
more details.

System Extensions
Can you do alterations?

Oct 6, 1989

The Local Station system software has evolved over a number of years as new
features have been added and changed. This document describes procedures that
may be used to make some commonly-requested additions.

Add a new application page
This is done without any system code changes. After preparing the program

in S-record format using the cross compiler and/or assembler, find an area in
non-volatile memory (so the application will survive a power down) sufficient to
contain the linked application. Download the code into that area using the
Download Page to process the S-records sent to a serial port of one local station.
Go to the index page and find an available page slot to be used in calling up the
new application. Invoke the list of entry points of the applications associated
with each page by calling up the index page again with the hex switch (one of the
small console units buttons) depressed. Enter the starting address—which is
assumed to be the entry point—of the application area and press the interrupt
button with the cursor just beyond the last character of the 8-digit address with
the hex switch depressed. (Obviously, without the hex switch depressed, that page
would be invoked at the old entry address.) At this point, you should notice that
the newly-entered address is displayed as it was typed, and there is no “–” in the
second character position of the line. If there is a “–” present, it means that the
entry point address does not seem to be valid, and the system will refuse to
invoke it. It must be even and not too small, and it must point to a word of
memory with the value $47FA, the opword for a LEA disp(A3) instruction,
which must be the first instruction of every application page program. Then call
up the new application in the usual way.

To provide a title to the application, call up the page, type the 16-character title
on the top line starting in the third character position, and return to the index
page by placing the cursor in the home position and interrupting. The new title
will be available on the index page and at the top of the application page the next
time it is invoked.

System Extensions Oct 6, 1989 page 2

Add a new Data Access Table entry type
Design a 16-byte entry format to be used for the new type. The first byte is the

type#, a small positive value chosen by checking the branch table READS at the
end of the RDADNEW module. The second byte is assumed to be a destination
table#, which is usually $00 to denote the ADATA table for analog channel
readings or $05 to denote the BBYTE table for binary byte data readings. If there
no table# is required, set it to a negative value (like $FF) to denote that it is not a
table# to get around the check for the entry# being out of range for the table size.
(The auto-setting entry type uses this.) The next two bytes (the second word) are
assumed to be the destination table entry#, and is therefore a Chan# (for the
ADATA case) or a Byte# (for the BBYTE case).

Write a routine to process the entry and add its entry point to the branch table
READS mentioned above. If the routine is external to the RDADNEW module,
declare an XREF of course. The routine is called with registers set to the various
fields of the 8-word entry as follows:

table# D4.W A1.L

D5.L D2.W D3.W

type

In addition,
D1.L= offset to the destination table entry in the table
D6.W= #bytes/entry in destination table
A2.L= ptr to destination table entry
Condition codes set by TST.W D3 instruction

All registers may be altered by the routine except A3/A5/A6/A7. Examine other
routines for examples. The document entitled “RDATA Entry Formats” describes
the current entry types available.

System Extensions Oct 6, 1989 page 3
Add new Analog Control type

The SETAC module contains many routines selected by the analog control
type byte in the analog control field of the analog descriptor. That field is
currently 4 bytes in length. The first byte is the type# byte, and the meaning of
the other 3 bytes depends upon the type#. A setting to an analog channel device
results in a call to one of these routines.

To add a new type of analog control routine, design a data structure that can be
used for the analog control field:

type

Add a new routine reference to both the branch table SETACS and the branch
table SETREL at the end of the SETAC module. Write the SETACS routine
consistent with the following register-based calling sequence:

D4.W= dataword to be set
A0.L= ptr to analog control field of analog descriptor for this channel
A4.L= ptr to setting word in ADATA table for this channel

Any registers may be altered except A3/A5/A6/A7. By convention, the routine
should include copying the dataword into the setting word of the ADATA entry iff
no errors are detected in processing the setting. In this way, a readback of the
setting value (following the setting command) can determine whether a setting to
an analog channel was successful.

To support knob relative settings, the SETREL branch table invokes a routine
which scales the knob click, the dataword for the relative setting (listype=7) case,
based upon the analog control type. (This may not always be sufficient; the case
of 1553 analog control required a separate type# for 12-bit and 16-bit D/A
relative control.) The scaled knob click value plus the setting word forms the
intended setting value.

System Extensions Oct 6, 1989 page 4
Add a new read type routine

An entry in the Listype Table (module LTT) indexed by listype# includes a
read type#. The routine indexed by this value is in the READS table at the end of
the COLLECT module. (Don’t be confused by the name READS also being used in
the RDADNEW module; they are different branch tables.) It is invoked by an
application program’s call to Collect and also by the Update task when
updating network requests. (The Server task also calls it using CollectS.)

The routine has a register-based calling sequence. Upon entry to the routine,
D0.W= #idents–1 (or #internal ptrs – 1, since there is one ptr per ident)
D1.W= #bytes to return (>0)
A1.L= Ptr to array of internal ptrs (corresponding to original array of idents)
A2.L= Ptr to data array to be filled

The significance of an internal ptr depends on the code in the REQDGENP or
PREQDGEN modules that generated the internal ptr. It is typically a ptr to an entry
in a system table, or it may be a ptr into an external answer buffer, usually with
the sign bit set to indicate this, or it may be a ptr to a source of zeros—a null ptr.
Whatever it is, the read type routine must be aware of its possibilities.

Upon exit from the read type routine, the A2 register must be advanced past the
data area of answers produced in satisfying the array of idents. The calling
routine then will “even up” the A2 address so that the answers for the next
listype, if any, in the request will start on a word boundary. Note that an odd
#bytes in a data request will only result in a filler byte after processing the array
of idents. Normally, the only odd #bytes likely to be used is 1.

Also upon exit from the read type routine, if the condition code status indicates
overflow, the calling routine will assume a bus error occurred during processing
and will return an error code 4 to the user.

Besides the A2 register and the condition code status, all registers are available to
the read type routine, except A3/A5/A6/A7.

Most of the current read type routines are found in the COLLECT module.

System Extensions Oct 6, 1989 page 5
Add a new set type routine

An entry in the Listype Table (module LTT) indexed by listype# includes a set
type#. The routine indexed by this value is in the SETS table at the end of the
SETDATA module. It is invoked by an application program’s call to SetData and
also by the Network task when processing setting messages from the network.
There are two variations of set type routines. The first is used if the ptr type byte
is < 32, indicating a system table#. In this case, the ident is assumed to be a table
entry# and is checked to be within the range of the table. The second variation is
used if the ptr type byte is ≥ 32.

Upon entry to a set type routine,
D2.W= #bytes of data
D5.W= ptr info byte
D6.W= 0 if short ident, -2 if long ident
A1.L= ptr to data
A2.L= ptr to ident

In addition, if the ptr type < 32, system table parameters are made available as
D4.W= entry# from ident
A4.L= ptr to field in table entry (using D5.W as offset to field in entry)

Add a new ptr type routine
When adding a new read type routine, it is sometimes necessary to add a new

ptr type routine as well. The ptr type routine generates an internal ptr from an
ident. The read type routine generates answer data from an internal ptr. For
more explanation of ptr type routines, see the document entitled “Internal Ptrs.”

	IP SOFTWARE
	ARP Request Support
	Classic Protocol
	IP Fragmentation
	IP Global Data Structure
	IP Multicast Addresses
	IP Security
	IP Support

	IRM SOFTWARE
	Fast Time Plot Data Ac.
	IRM Installation
	IRM Software Overview
	IRM Test Points Connector
	ROM Boot Configuration

	SRM SOFTWARE
	Arcnet Gateway
	Arcnet Support
	Simple Protocol for SRMs
	SRM/Arcner Variable Prose
	SRM Message Protocols

	VME SOFTWARE
	Analog Descriptor Add-ons
	1553 Control for Co-processors
	Co-processor Message Queues
	D0 Data Requests/Settings
	1553 Data Acquisition
	Data Request Timing
	Data Streams
	Data Streams Implementation
	Digital Control Pulse Delays
	Floating Point Data Requests
	Moderately Fast Data Collection
	Memory Mapped I/O for D0
	Message Queue Formats
	Motor Control Specifications
	System Tables and Their Uses
	VME System Data Requests

	NETWORK SOFTWARE
	Acnet Data Requests/Settings
	Acnet on UDP/IP
	EACNET Support for Local Stations
	FTPMAN Implementation Notes
	FTPMAN Design for Local Stations
	FTPMAN Timestamps
	Data Access Table Function
	Multiple Networks
	Multiple Settings
	Network Addressing Notes
	Network Group Addressing
	Network Services
	Option Switches in VME System
	ReqD Notes
	UDP Layer

	CLOCK SOFTWARE
	Clock Event Queue
	VME Clock Timer Board
	Event-driven Replies to Data Requests
	Memory Data Streams

	MISCELLANEOUS SOFTWARE
	Alarms Task
	Analog Control Types
	Auto-page on Demand
	Capture Analog Readings
	Composite Digital Status Words
	Data Access Table Formats
	D0 Alarms
	Family Alarm Messages
	FTPMAN Fast Time Data Addition
	Internal Ptrs
	MMAPS table entries for D0 Boards
	Monitoring Counters
	Motor Variations
	MPW Conversion
	NTF Connection
	NTF Interlocks Checking
	Ptr Type Read Type Routines
	RDATA Periodicity
	Reading Averaging
	Read-type Routines
	Related Groups of Channels
	Restoring a Local Station
	Restoring Local Stations
	System Extensions

